Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis: MICCAI 2021 Challenges: MIDOG 2021, MOOD 2021, and Learn2Reg 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27–October 1, 2021, Proceedings: Lecture Notes in Computer Science, cartea 13166
Editat de Marc Aubreville, David Zimmerer, Mattias Heinrichen Limba Engleză Paperback – 2 mar 2022
The peer-reviewed 18 long and 9 short papers included in this volume stem from the following three biomedical image analysis challenges:
- Mitosis Domain Generalization Challenge (MIDOG 2021),
- Medical Out-of-Distribution Analysis Challenge (MOOD 2021), and
- Learn2Reg (L2R 2021).
Din seria Lecture Notes in Computer Science
- 20%
Preț: 390.18 lei - 20%
Preț: 461.65 lei - 20%
Preț: 461.32 lei - 20%
Preț: 461.77 lei - 20%
Preț: 527.36 lei - 20%
Preț: 497.04 lei - 20%
Preț: 461.52 lei - 20%
Preț: 390.35 lei - 20%
Preț: 496.64 lei - 20%
Preț: 461.52 lei - 20%
Preț: 391.14 lei - 15%
Preț: 461.85 lei - 20%
Preț: 389.72 lei - 20%
Preț: 461.06 lei - 20%
Preț: 390.69 lei - 20%
Preț: 252.15 lei - 20%
Preț: 391.14 lei - 20%
Preț: 532.54 lei - 20%
Preț: 461.83 lei - 20%
Preț: 255.91 lei - 20%
Preț: 498.46 lei - 20%
Preț: 497.55 lei - 20%
Preț: 499.36 lei - 20%
Preț: 390.12 lei - 20%
Preț: 391.20 lei - 20%
Preț: 390.35 lei - 20%
Preț: 391.20 lei - 20%
Preț: 392.64 lei - 20%
Preț: 389.90 lei - 20%
Preț: 639.72 lei - 20%
Preț: 461.65 lei - 20%
Preț: 462.05 lei - 15%
Preț: 388.50 lei - 5%
Preț: 516.27 lei - 20%
Preț: 390.94 lei - 20%
Preț: 391.86 lei - 20%
Preț: 389.85 lei - 20%
Preț: 498.32 lei - 20%
Preț: 462.67 lei - 20%
Preț: 460.98 lei - 20%
Preț: 424.26 lei - 20%
Preț: 535.77 lei - 15%
Preț: 535.92 lei - 20%
Preț: 532.28 lei - 20%
Preț: 400.17 lei - 20%
Preț: 403.00 lei - 20%
Preț: 461.57 lei - 20%
Preț: 498.50 lei - 20%
Preț: 461.83 lei - 20%
Preț: 249.95 lei
Preț: 342.82 lei
Preț vechi: 428.53 lei
-20% Nou
Puncte Express: 514
Preț estimativ în valută:
60.65€ • 70.66$ • 52.97£
60.65€ • 70.66$ • 52.97£
Carte tipărită la comandă
Livrare economică 17-31 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030972806
ISBN-10: 3030972801
Pagini: 194
Ilustrații: IX, 194 p. 68 illus., 51 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.3 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
ISBN-10: 3030972801
Pagini: 194
Ilustrații: IX, 194 p. 68 illus., 51 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.3 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
Cuprins
Preface MIDOG 2021.- Domain Adversarial RetinaNet as a Reference Algorithm for the MItosis DOmainGeneralization Challenge.- Assessing domain adaptation techniques for mitosis detection in multi-scanner breast cancer histopathology images.- Domain-Robust Mitotic Figure Detection with StyleGAN.- Two-step Domain Adaptation for Mitosis Cell Detection in Histopathology Images.- Robust Mitosis Detection Using a Cascade Mask-RCNN Approach With Domain-Specific Residual Cycle-GAN Data Augmentation.- Stain-Robust Mitotic Figure Detection for the Mitosis Domain Generalization Challenge.- MitoDet: Simple and robust mitosis detection.- Multi-source Domain Adaptation Using Gradient Reversal Layer for Mitotic Cell Detection.- Rotation Invariance and Extensive Data Augmentation: a strategy for the Mitosis Domain Generalization (MIDOG) Challenge.- Detecting Mitosis against Domain Shift using a Fused Detector and Deep Ensemble Classi cation Model for MIDOG Challenge.- Domain Adaptive Cascade R-CNN for Mitosis DOmain Generalization (MIDOG) Challenge.- Reducing Domain Shift For Mitosis Detection Using Preprocessing Homogenizers.- Cascade RCNN for MIDOG Challenge.- Sk-Unet Model with Fourier Domain for Mitosis Detection.- Preface MOOD21.- Self-Supervised 3D Out-of-Distribution Detection via Pseudoanomaly Generation.- Self-Supervised Medical Out-of-Distribution Using U-Net Vision Transformers.- SS3D: Unsupervised Out-of-Distribution Detection and Localization for Medical Volumes.- MetaDetector: Detecting Outliers by Learning to Learn from Self-supervision.- AutoSeg - Steering the Inductive Biases for Automatic Pathology Segmentation.- Preface Learn2Reg 2021.- Deformable Registration of Brain MR Images via a Hybrid Loss.- Fraunhofer MEVIS Image Registration Solutions for the Learn2Reg 2021 Challenge.- Unsupervised Volumetric Displacement Fields Using Cost Function Unrolling.- Conditional Deep Laplacian Pyramid Image Registration Network in Learn2Reg Challenge.- TheLearn2Reg 2021 MICCAI Grand Challenge (PIMed Team).- Fast 3D registration with accurate optimisation and little learning for Learn2Reg 2021.- Progressive and Coarse-to-fine Network for Medical Image Registration across Phases, Modalities and Patients. -Semi-supervised Multilevel Symmetric Image Registration Method for Magnetic Resonance Whole Brain Images.