Automatic Differentiation: Applications, Theory, and Implementations: Lecture Notes in Computational Science and Engineering, cartea 50
Editat de H. Martin Bücker, George Corliss, Paul Hovland, Uwe Naumann, Boyana Norrisen Limba Engleză Paperback – 14 dec 2005
Din seria Lecture Notes in Computational Science and Engineering
- 18%
Preț: 2066.88 lei - 18%
Preț: 1199.16 lei - 15%
Preț: 611.27 lei -
Preț: 369.74 lei - 20%
Preț: 952.45 lei - 15%
Preț: 623.52 lei - 15%
Preț: 627.79 lei -
Preț: 389.88 lei - 18%
Preț: 931.97 lei - 18%
Preț: 925.12 lei -
Preț: 382.85 lei - 18%
Preț: 925.12 lei - 15%
Preț: 622.11 lei - 15%
Preț: 623.52 lei - 15%
Preț: 624.46 lei - 18%
Preț: 1330.00 lei -
Preț: 412.52 lei -
Preț: 411.99 lei - 20%
Preț: 640.50 lei - 15%
Preț: 629.18 lei - 15%
Preț: 619.45 lei - 18%
Preț: 920.45 lei - 18%
Preț: 1176.56 lei - 18%
Preț: 869.03 lei - 18%
Preț: 1194.47 lei - 20%
Preț: 953.57 lei - 15%
Preț: 618.03 lei - 18%
Preț: 917.40 lei - 18%
Preț: 752.87 lei - 18%
Preț: 912.55 lei - 15%
Preț: 618.03 lei - 18%
Preț: 1211.75 lei - 15%
Preț: 625.26 lei - 18%
Preț: 705.56 lei -
Preț: 368.96 lei
Preț: 1173.54 lei
Preț vechi: 1431.15 lei
-18%
Puncte Express: 1760
Preț estimativ în valută:
207.69€ • 242.73$ • 180.32£
207.69€ • 242.73$ • 180.32£
Carte tipărită la comandă
Livrare economică 19 februarie-05 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540284031
ISBN-10: 3540284036
Pagini: 400
Ilustrații: XVIII, 370 p. 108 illus.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.54 kg
Ediția:2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computational Science and Engineering
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540284036
Pagini: 400
Ilustrații: XVIII, 370 p. 108 illus.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.54 kg
Ediția:2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computational Science and Engineering
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Perspectives on Automatic Differentiation: Past, Present, and Future?.- Backwards Differentiation in AD and Neural Nets: Past Links and New Opportunities.- Solutions of ODEs with Removable Singularities.- Automatic Propagation of Uncertainties.- High-Order Representation of Poincarée Maps.- Computation of Matrix Permanent with Automatic Differentiation.- Computing Sparse Jacobian Matrices Optimally.- Application of AD-based Quasi-Newton Methods to Stiff ODEs.- Reduction of Storage Requirement by Checkpointing for Time-Dependent Optimal Control Problems in ODEs.- Improving the Performance of the Vertex Elimination Algorithm for Derivative Calculation.- Flattening Basic Blocks.- The Adjoint Data-Flow Analyses: Formalization, Properties, and Applications.- Semiautomatic Differentiation for Efficient Gradient Computations.- Computing Adjoints with the NAGWare Fortran 95 Compiler.- Transforming Equation-Based Models in Process Engineering.- Extension of TAPENADE toward Fortran 95.- A Macro Language for Derivative Definition in ADiMat.- Simulation and Optimization of the Tevatron Accelerator.- Periodic Orbits of Hybrid Systems and Parameter Estimation via AD.- Implementation of Automatic Differentiation Tools for Multicriteria IMRT Optimization.- Application of Targeted Automatic Differentiation to Large-Scale Dynamic Optimization.- Automatic Differentiation: A Tool for Variational Data Assimilation and Adjoint Sensitivity Analysis for Flood Modeling.- Development of an Adjoint for a Complex Atmospheric Model, the ARPS, using TAF.- Tangent Linear and Adjoint Versions of NASA/GMAO’s Fortran 90 Global Weather Forecast Model.- Efficient Sensitivities for the Spin-Up Phase.- Streamlined Circuit Device Model Development with fREEDAR® ãnd ADOL-C.- Adjoint Differentiation of aStructural Dynamics Solver.- A Bibliography of Automatic Differentiation.
Caracteristici
Includes supplementary material: sn.pub/extras