Artificial Neural Networks and Machine Learning – ICANN 2023: 32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26–29, 2023, Proceedings, Part VI: Lecture Notes in Computer Science, cartea 14259
Editat de Lazaros Iliadis, Antonios Papaleonidas, Plamen Angelov, Chrisina Jayneen Limba Engleză Paperback – 22 sep 2023
The 426 full papers, 9 short papers and 9 abstract papers included in these proceedings were carefully reviewed and selected from 947 submissions. ICANN is a dual-track conference, featuring tracks in brain inspired computing on the one hand, and machine learning on the other, with strong cross-disciplinary interactions and applications.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (10) | 523.82 lei 6-8 săpt. | +35.95 lei 10-14 zile |
| Springer Nature Switzerland – 22 sep 2023 | 567.73 lei 3-5 săpt. | +35.95 lei 10-14 zile |
| Springer Nature Switzerland – 22 sep 2023 | 523.82 lei 6-8 săpt. | |
| Springer Nature Switzerland – 22 sep 2023 | 527.01 lei 6-8 săpt. | |
| Springer Nature Switzerland – 22 sep 2023 | 527.01 lei 6-8 săpt. | |
| Springer Nature Switzerland – 23 sep 2023 | 578.38 lei 6-8 săpt. | |
| Springer Nature Switzerland – 22 sep 2023 | 579.31 lei 6-8 săpt. | |
| Springer Nature Switzerland – 22 sep 2023 | 581.53 lei 6-8 săpt. | |
| Springer Nature Switzerland – 22 sep 2023 | 581.53 lei 6-8 săpt. | |
| Springer Nature Switzerland – 22 sep 2023 | 581.70 lei 6-8 săpt. | |
| Springer Nature Switzerland – 22 sep 2023 | 582.17 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 498.59 lei - 15%
Preț: 426.53 lei - 20%
Preț: 320.92 lei - 20%
Preț: 461.86 lei - 20%
Preț: 427.09 lei - 20%
Preț: 498.95 lei - 20%
Preț: 313.87 lei - 20%
Preț: 499.40 lei - 20%
Preț: 390.68 lei - 20%
Preț: 392.03 lei - 20%
Preț: 495.44 lei - 20%
Preț: 499.90 lei - 15%
Preț: 496.40 lei - 20%
Preț: 355.59 lei - 20%
Preț: 498.80 lei - 20%
Preț: 315.62 lei - 20%
Preț: 355.18 lei - 20%
Preț: 463.03 lei -
Preț: 418.19 lei - 20%
Preț: 426.75 lei - 20%
Preț: 326.81 lei - 20%
Preț: 391.36 lei - 20%
Preț: 321.68 lei - 20%
Preț: 390.79 lei - 20%
Preț: 498.90 lei - 20%
Preț: 498.95 lei - 20%
Preț: 390.42 lei - 20%
Preț: 496.73 lei - 20%
Preț: 498.50 lei - 20%
Preț: 497.25 lei - 20%
Preț: 355.79 lei - 20%
Preț: 498.80 lei - 20%
Preț: 355.69 lei - 20%
Preț: 324.19 lei - 20%
Preț: 391.28 lei - 20%
Preț: 639.52 lei - 20%
Preț: 355.54 lei - 20%
Preț: 355.93 lei - 20%
Preț: 499.90 lei - 15%
Preț: 499.72 lei - 20%
Preț: 458.84 lei - 20%
Preț: 270.68 lei - 20%
Preț: 497.75 lei - 20%
Preț: 322.32 lei - 20%
Preț: 390.42 lei - 20%
Preț: 322.09 lei - 20%
Preț: 312.82 lei - 20%
Preț: 320.72 lei - 20%
Preț: 390.12 lei
Preț: 581.53 lei
Preț vechi: 726.91 lei
-20% Nou
Puncte Express: 872
Preț estimativ în valută:
102.89€ • 119.87$ • 89.85£
102.89€ • 119.87$ • 89.85£
Carte tipărită la comandă
Livrare economică 17-31 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031442223
ISBN-10: 3031442229
Pagini: 591
Ilustrații: XXXV, 591 p. 196 illus., 182 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.87 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031442229
Pagini: 591
Ilustrații: XXXV, 591 p. 196 illus., 182 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.87 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
A Further Exploration of Deep Multi-Agent Reinforcement Learning with Hybrid Action Space.- Air-to-Ground Active Object Tracking via Reinforcement Learning.- Enhancing P300 Detection in Brain-Computer Interfaces with Interpretable Post-Processing of Recurrent Neural Networks.- Group-Agent Reinforcement Learning.- Improving Generalization of Multi-agent Reinforcement Learning through Domain-Invariant Feature Extraction.- Latent-Conditioned Policy Gradient for Multi-Objective Deep Reinforcement Learning.- LIIVSR: A Unidirectional Recurrent Video Super-Resolution Framework with Gaussian Detail Enhancement and Local Information Interaction Modules.- Masked Scale-Recurrent Network for Incomplete Blurred Image Restoration.- Multi-fusion Recurrent Network for Argument Pair Extraction.- Pacesetter Learning For Large Scale Cooperative Multi-Agent Reinforcement Learning.- Stable Learning Algorithm Using Reducibility for Recurrent Neural Networks.- t-ConvESN: Temporal Convolution-Readout for Random Recurrent Neural Networks.- Adaptive Reservoir Neural Gas: An Effective Clustering Algorithm for Addressing Concept Drift in Real-Time Data Streams.- An Intelligent Dynamic Selection System Based on Nearest Temporal Windows for Time Series Forecasting.- Generating Sparse Counterfactual Explanations For Multivariate Time Series.- Graph Neural Network-Based Representation Learning for Medical Time Series.- Knowledge Forcing: Fusing Knowledge-Driven Approaches with LSTM for Time Series Forecasting.- MAGNet: Muti-scale Attention and Evolutionary Graph Structure for Long Sequence Time-Series Forecasting.- MIPCE: Generating Multiple Patches Counterfactual-changing Explanations for Time Series Classification.- Multi-Timestep-Ahead Prediction with Mixture of Experts for Embodied Question Answering.- Rethink the Top-u Attention in Sparse Self-attention for Long Sequence Time-Series Forecasting.- Temporal Attention Signatures for Interpretable Time-Series Prediction.- Time-Series Prediction of Calcium Carbonate Concentration in Flue Gas Desulfurization Equipment by Optimized Echo State Network.- WAG-NAT: Window Attention and Generator Based Non-Autoregressive Transformer for Time Series Forecasting.- A Novel Encoder and Label Assignment for Instance Segmentation.- A Transformer-based Framework for Biomedical Information Retrieval Systems.- A Transformer-Based Method for UAV-View Geo-Localization.- Cross-graph Transformer Network for Temporal Sentence Grounding.- EGCN: A Node Classification Model based on Transformer and Spatial Feature Attention GCN for Dynamic Graph.- Enhance Representational Differentiation Step By Step: A Two-Stage Encoder-Decoder Network for Implicit Discourse Relation Classification.- GenTC: Generative Transformer via Contrastive Learning for Receipt Information Extraction.- Hierarchical Classification for Symmetrized VI Trajectory Based on Lightweight Swin Transformer.- Hierarchical Vision and Language Transformer for Efficient Visual Dialog.- ICDT: Maintaining Interaction Consistency for Deformable Transformer with Multi-scale Features in HOI Detection.- Imbalanced Conditional Conv-Transformer For Mathematical Expression Recognition.- Knowledge Graph Transformer for Sequential Recommendation.- LorenTzE: Temporal Knowledge Graph Embedding based on Lorentz Transformation.- MFT: Multi-scale Fusion Transformer for Infrared and Visible Image Fusion.- NeuralODE-based Latent Trajectories into AutoEncoder Architecture for Surrogate Modelling of Parametrized High-dimensional Dynamical Systems.- RRecT: Chinese Text Recognition with Radical-enhanced Recognition Transformer.- S2R: Exploring a Double-Win Transformer-Based Framework for Ideal and Blind Super-Resolution.- Self-adapted Positional Encoding in the Transformer Encoder for Named Entity Recognition.- SHGAE: Social Hypergraph AutoEncoder for Friendship Inference.- Temporal Deformable Transformer For Action Localization.- Trans-Cycle: Unpaired Image-to-Image Translation Network by Transformer.