Applied Analysis: Mathematics and Its Applications, cartea 31
Autor A.M. Krallen Limba Engleză Paperback – 31 oct 1986
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 628.73 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 31 oct 1986 | 628.73 lei 6-8 săpt. | |
| Hardback (1) | 635.31 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 31 oct 1986 | 635.31 lei 6-8 săpt. |
Din seria Mathematics and Its Applications
- 20%
Preț: 960.38 lei - 15%
Preț: 632.63 lei - 18%
Preț: 926.23 lei - 18%
Preț: 908.91 lei - 15%
Preț: 623.39 lei - 15%
Preț: 626.82 lei -
Preț: 379.31 lei - 18%
Preț: 965.60 lei - 15%
Preț: 633.26 lei - 15%
Preț: 623.52 lei -
Preț: 379.89 lei - 15%
Preț: 626.68 lei -
Preț: 405.52 lei -
Preț: 379.51 lei -
Preț: 376.17 lei -
Preț: 374.91 lei - 20%
Preț: 566.92 lei - 15%
Preț: 628.73 lei - 20%
Preț: 624.91 lei -
Preț: 380.46 lei - 15%
Preț: 626.68 lei - 15%
Preț: 624.01 lei -
Preț: 377.32 lei - 15%
Preț: 624.01 lei - 15%
Preț: 618.64 lei -
Preț: 383.03 lei -
Preț: 371.00 lei - 15%
Preț: 614.24 lei - 15%
Preț: 629.85 lei - 18%
Preț: 876.15 lei
Preț: 628.73 lei
Preț vechi: 739.68 lei
-15% Nou
Puncte Express: 943
Preț estimativ în valută:
111.26€ • 130.46$ • 97.71£
111.26€ • 130.46$ • 97.71£
Carte tipărită la comandă
Livrare economică 09-23 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789027723420
ISBN-10: 9027723427
Pagini: 576
Ilustrații: XI, 561 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.79 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9027723427
Pagini: 576
Ilustrații: XI, 561 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.79 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
I. Some Inequalities.- 1. Young’s Inequality.- 2. Hölder’s Inequality.- 3. Minkowski’s Inequality.- 4. A Relation between Different Norms.- II. Linear Spaces and Linear Operators.- 1. Linear Spaces.- 2. Linear Operators.- 3. Norms and Banach Spaces.- 4. Operator Convergence.- III. Existence and Uniqueness Theorems.- 1. The Contraction Mapping Theorem.- 2. Existence and Uniqueness of Solutions for Ordinary Differential Equations.- 3. First Order Linear Systems.- 4. n-th Order Differential Equations.- 5. Some Extensions.- IV. Linear Ordinary Differential Equations.- 1. First Order Linear Systems.- 2. Fundamental Matrices.- 3. Nonhomogeneous Systems.- 4. n-th Order Equations.- 5. Nonhomogeneous n-th Order Equations.- 6. Reduction of Order.- 7. Constant Coefficients.- V. Second Order Ordinary Differential Equations.- 1. A Brief Review.- 2. The Adjoint Operator.- 3. An Oscillation Theorem.- 4. The Regular Sturm-Liouville Problem.- 5. The Inverse Problem, Green’s Functions.- VI. The Stone-Weierstrass Theorem.- 1. Preliminary Remarks.- 2. Algebras and Subalgebras.- 3. The Stone-Weierstrass Theorem.- 4. Extensions and Special Cases.- VII. Hilbert Spaces.- 1. Hermitian Forms.- 2. Inner Product Spaces.- 3. Hilbert Spaces.- 4. Orthogonal Subspaces.- 5. Continuous Linear Functionals.- 6. Fourier Expansions.- 7. Isometric Hilbert Spaces.- VIII. Linear Operators on a Hilbert Space.- 1. Regular Operators on a Hilbert Space.- 2. Bilinear Forms, the Adjoint Operator.- 3. Self-Adjoint Operators.- 4. Projections.- 5. Some Spectral Theorems.- 6. Operator Convergence.- 7. The Spectral Resolution of a Self-Adjoint Operator.- 8. The Spectral Resolution of a Normal Operator.- 9. The Spectral Resolution of a Unitary Operator.- IX. Compact Operators on a Hilbert Space.- 1. Compact Operators.- 2. Some Special Examples.- 3. The Spectrum of a Compact Self-Adjoint Operator.- 4. The Spectral Resolution of a Compact, Self-Adjoint Operator.- 5. The Regular Sturm-Liouville Problem.- X. Special Functions.- 1. Orthogonal Polynomials.- 2. The Legendre Polynomials.- 3. The Laguerre Polynomials.- 4. The Hermite Polynomials.- 5. Bessel Functions.- XI. The Fourier Integral.- 1. The Lebesgue Integral.- 2. The Fourier Integral in L1(-?, ?).- 3. The Fourier Integral in L2(-?, ?).- XII. The Singular Sturm-Liouville Problem.- 1. Circles under Bilinear Transformations.- 2. Helly’s Convergence Theorems.- 3. Limit Points and Limit Circles.- 4. The Limit Point Case.- 5. The Limit Circle Case.- 6. Examples.- XIII. An Introduction to Partial Differential Equations.- 1. The Cauchy-Kowaleski Theorem.- 2. First Order Equations.- 3. Second Order Equations.- 4. Green’s Formula.- XIV. Distributions.- 1. Test Functions and Distributions.- 2. Limits of Distributions.- 3. Fourier Transforms of Distributions.- 4. Applications of Distributions to Ordinary Differential Equations.- 5. Applications of Distributions to Partial Differential Equations.- XV. Laplace’s Equation.- 1. Introduction, Well Posed Problems.- 2. Dirichlet, Neumann, and Mixed Boundary Value Problems.- 3. The Dirichlet Problem.- 4. The Dirichlet Problem on the Unit Circle.- 5. Other Examples.- XVI. The Heat Equation.- 1. Introduction, the Cauchy Problem.- 2. The Cauchy Problem with Dirichlet Boundary Data.- 3. The Solution to the Nonhomogeneous Cauchy Problem.- 4. Examples.- 5. Homogeneous Problems.- XVII. The Wave Equation.- 1. Introduction, the Cauchy Problem.- 2. Solutions in 1, 2 and 3 Dimensions.- 3. The Solution to the Nonhomogeneous Cauchy Problem.- 4. Examples.- Appendix I The Spectral Resolution of an Unbounded Self-Adjoint Operator.- 1. Unbounded Linear Operators.- 2. The Graph of an Operator.- 3. Symmetric and Self-Adjoint Operators.- 4. The Spectral Resolution of an Unbounded Self-Adjoint Operator.- Appendix II The Derivation of the Heat, Wave and Lapace Equations.- 1. The Heat Equation.- 2. Boundary Conditions.- 3. The Wave Equation.- 4. Boundary Conditions.- 5. Laplace’s Equation.