Cantitate/Preț
Produs

Analytic Capacity, Rectifiability, Menger Curvature and Cauchy Integral

Autor Hervé M. Pajot
en Limba Engleză Paperback – 26 noi 2002
Based on a graduate course given by the author at Yale University this book deals with complex analysis (analytic capacity), geometric measure theory (rectifiable and uniformly rectifiable sets) and harmonic analysis (boundedness of singular integral operators on Ahlfors-regular sets). In particular, these notes contain a description of Peter Jones' geometric traveling salesman theorem, the proof of the equivalence between uniform rectifiability and boundedness of the Cauchy operator on Ahlfors-regular sets, the complete proofs of the Denjoy conjecture and the Vitushkin conjecture (for the latter, only the Ahlfors-regular case) and a discussion of X. Tolsa's solution of the Painlevé problem.
Citește tot Restrânge

Preț: 33339 lei

Nou

Puncte Express: 500

Preț estimativ în valută:
5899 6872$ 5151£

Carte tipărită la comandă

Livrare economică 19 ianuarie-02 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540000013
ISBN-10: 3540000011
Pagini: 140
Ilustrații: VIII, 119 p.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.22 kg
Ediția:2002
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Preface.- Notations and conventions.- Some geometric measures theory.- Jones' traveling salesman theorem.- Menger curvature.- The Cauchy singular integral operator on Ahlfors-regular sets.- Analytic capacity and the Painlevé Problem.- The Denjoy and Vitushkin conjectures.- The capacity $gamma (+)$ and the Painlevé Problem.- Bibliography.- Index.

Caracteristici

Includes supplementary material: sn.pub/extras