Advanced Computing: 13th International Conference, IACC 2023, Kolhapur, India, December 15–16, 2023, Revised Selected Papers, Part II: Communications in Computer and Information Science, cartea 2054
Editat de Deepak Garg, Joel J. P. C. Rodrigues, Suneet Kumar Gupta, Xiaochun Cheng, Pushpender Sarao, Govind Singh Patelen Limba Engleză Paperback – 26 mar 2024
The two-volume set CCIS 2053 and 2054 constitutes the refereed post-conference proceedings of the 13th International Advanced Computing Conference, IACC 2023, held in Kolhapur, India, during December 15–16, 2023.
The 66 full papers and 6 short papers presented in these proceedings were carefully reviewed and selected from 425 submissions. The papers are organized in the following topical sections:
Volume I:
The AI renaissance: a new era of human-machine collaboration; application of recurrent neural network in natural language processing, AI content detection and time series data analysis; unveiling the next frontier of AI advancement.
Volume II:
Agricultural resilience and disaster management for sustainable harvest; disease and abnormalities detection using ML and IOT; application of deep learning in healthcare; cancer detection using AI.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (2) | 573.27 lei 6-8 săpt. | |
| Springer Nature Switzerland – 26 mar 2024 | 573.27 lei 6-8 săpt. | |
| Springer Nature Switzerland – 15 apr 2024 | 631.77 lei 6-8 săpt. |
Din seria Communications in Computer and Information Science
- 20%
Preț: 423.55 lei - 20%
Preț: 579.53 lei - 20%
Preț: 460.54 lei - 20%
Preț: 313.10 lei - 20%
Preț: 643.20 lei - 20%
Preț: 312.30 lei - 20%
Preț: 324.99 lei - 20%
Preț: 630.84 lei - 20%
Preț: 634.45 lei - 20%
Preț: 321.17 lei - 20%
Preț: 324.68 lei - 20%
Preț: 631.00 lei - 20%
Preț: 631.31 lei - 20%
Preț: 633.83 lei -
Preț: 377.68 lei - 20%
Preț: 388.30 lei - 20%
Preț: 317.05 lei -
Preț: 371.37 lei - 20%
Preț: 323.23 lei - 20%
Preț: 423.73 lei - 20%
Preț: 321.81 lei - 20%
Preț: 319.13 lei - 20%
Preț: 630.51 lei - 20%
Preț: 325.61 lei - 20%
Preț: 321.17 lei - 20%
Preț: 321.81 lei - 20%
Preț: 325.79 lei - 20%
Preț: 640.83 lei - 20%
Preț: 323.23 lei - 20%
Preț: 325.79 lei - 20%
Preț: 317.68 lei - 20%
Preț: 635.26 lei - 15%
Preț: 623.39 lei - 20%
Preț: 628.32 lei - 20%
Preț: 319.42 lei - 20%
Preț: 324.99 lei - 20%
Preț: 1014.25 lei - 20%
Preț: 804.07 lei - 20%
Preț: 529.54 lei - 20%
Preț: 631.31 lei - 20%
Preț: 1183.08 lei - 20%
Preț: 494.98 lei - 20%
Preț: 388.26 lei - 20%
Preț: 318.67 lei - 20%
Preț: 389.14 lei - 20%
Preț: 323.23 lei - 20%
Preț: 458.73 lei - 20%
Preț: 530.40 lei - 20%
Preț: 388.00 lei - 20%
Preț: 632.09 lei
Preț: 573.27 lei
Preț vechi: 716.59 lei
-20% Nou
Puncte Express: 860
Preț estimativ în valută:
101.42€ • 118.88$ • 89.17£
101.42€ • 118.88$ • 89.17£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031567025
ISBN-10: 3031567021
Ilustrații: XXVIII, 424 p. 210 illus., 183 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.63 kg
Ediția:2024
Editura: Springer Nature Switzerland
Colecția Springer
Seria Communications in Computer and Information Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031567021
Ilustrații: XXVIII, 424 p. 210 illus., 183 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.63 kg
Ediția:2024
Editura: Springer Nature Switzerland
Colecția Springer
Seria Communications in Computer and Information Science
Locul publicării:Cham, Switzerland
Cuprins
Agricultural Resilience and Disaster Management for Sustainable Harvest.- Plant Disease Recognition using Machine Learning and Deep Learning Classifiers.- Securing Lives and Assets: IoT-Based Earthquake and Fire Detection for Real-Time Monitoring and Safety.- An Early Detection of Fall Using Knowledge Distillation Ensemble Prediction Using Classification.- Deep Learning Methods for Precise Sugarcane Disease Detection and Sustainable Crop Management.- An Interactive Interface for Plant Disease Prediction and Remedy Recommendation.- Tilapia Fish Freshness Detection using CNN Models.- Chilli Leaf Disease Detection using Deep Learning.- Damage Evaluation Following Natural Disasters Using Deep Learning.- Total Electron Content Forecasting in Low Latitude Regions of India: Machine & Deep Learning Synergy.- Disease and Abnormalities Detection using ML and IOT.- Early Phase Detection of Diabetes Mellitus Using Machine Learning.- Diabetes Risk Prediction through Fine-Tuned Gradient Boosting.- Early Detection of Diabetes using ML-based Classification Algorithms.- Prediction Of Abnormality Using IoT and Machine Learning.- Detection of Cardiovascular Diseases using Machine Learning Approach.- Mild Cognitive Impairment Diagnosis Using Neuropsychological Tests and Agile Machine Learning.- Heart Disease Diagnosis using Machine Learning Classifiers.- Comparative Evaluation of Feature Extraction Techniques in Chest X Ray Image with Different Classification Model.- Application of Deep Learning in Healthcare.- Transfer Learning Approach for Differentiating Parkinson’s Syndromes using Voice Recordings.- Detection of Brain Tumor Type Based on FANET Segmentation and Hybrid Squeeze Excitation Network with KNN.- Mental Health Analysis using Rasa and Bert: Mindful.- Kidney Failure Identification using Augment Intelligence and IOT Based on Integrated Healthcare System.- Efficient Characterization of Cough Sounds Using Statistical Analysis.- An Efficient Method for Heart Failure Diagnosis.- Novel Machine Learning Algorithms for Predicting COVID-19 Clinical Outcomes with Gender Analysis.- A Genetic Algorithm-Enhanced Deep Neural Network for Efficient and Optimized Brain Tumor Detection.- Diabetes Prediction using Ensemble Learning.- Cancer Detection Using AI.- A Predictive Deep Learning Ensemble Based Approach for Advanced Cancer Classification.- Predictive Deep Learning: An Analysis of Inception V3, VGG16, and VGG19 Models for Breast Cancer Detection.- Innovation in the Field of Oncology: Early Lung Cancer Detection and Classification using AI.- Colon Cancer Nuclei Classification with Convolutional Neural Networks.- Genetic Algorithm-based Optimization of UNet for Breast Cancer Classification: A Lightweight and Efficient approach for IoT Devices.- Classification of Colorectal Cancer Tissue Utilizing Machine Learning Algorithms.- Prediction of Breast Cancer using Machine Learning Technique.