A Practical Approach to Microarray Data Analysis
Editat de Daniel P. Berrar, Werner Dubitzky, Martin Granzowen Limba Engleză Paperback – 19 mar 2013
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 378.41 lei 43-57 zile | |
| Springer Us – 19 mar 2013 | 378.41 lei 43-57 zile | |
| Hardback (1) | 387.82 lei 43-57 zile | |
| Springer Us – 31 dec 2002 | 387.82 lei 43-57 zile |
Preț: 378.41 lei
Puncte Express: 568
Preț estimativ în valută:
66.92€ • 78.53$ • 58.04£
66.92€ • 78.53$ • 58.04£
Carte tipărită la comandă
Livrare economică 09-23 martie
Specificații
ISBN-13: 9781475778090
ISBN-10: 1475778090
Pagini: 388
Ilustrații: XVI, 368 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.54 kg
Ediția:Softcover reprint of the original 1st ed. 2003
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 1475778090
Pagini: 388
Ilustrații: XVI, 368 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.54 kg
Ediția:Softcover reprint of the original 1st ed. 2003
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
to Microarray Data Analysis.- Data Pre-Processing Issues in Microarray Analysis.- Missing Value Estimation.- Normalization.- Singular Value Decomposition and Principal Component Analysis.- Feature Selection in Microarray Analysis.- to Classification in Microarray Experiments.- Bayesian Network Classifiers for Gene Expression Analysis.- Classifying Microarray Data Using Support Vector Machines.- Weighted Flexible Compound Covariate Method for Classifying Microarray Data.- Classification of Expression Patterns Using Artificial Neural Networks.- Gene Selection and Sample Classification Using a Genetic Algorithm and k-Nearest Neighbor Method.- Clustering Genomic Expression Data: Design and Evaluation Principles.- Clustering or Automatic Class Discovery: Hierarchical Methods.- Discovering Genomic Expression Patterns with Self-Organizing Neural Networks.- Clustering or Automatic Class Discovery: Non-Hierarchical, non-SOM.- Correlation and Association Analysis.- Global Functional Profiling of Gene Expression Data.- Microarray Software Review.- Microarray Analysis as a Process.
Caracteristici
Addresses the requirement of scientists and researchers to gain a basic understanding of microarray analysis methodologies and tools