Cantitate/Preț
Produs

Variational Analysis

Autor R. Tyrrell Rockafellar, Roger J-B Wets
en Limba Engleză Hardback – 27 noi 1997
From its origins in the minimization of integral functionals, the notion of 'variations' has evolved greatly in connection with applications in optimization, equilibrium, and control. It refers not only to constrained movement away from a point, but also to modes of perturbation and approximation that are best describable by 'set convergence', variational convergence of functions and the like. This book develops a unified framework and, in finite dimension, provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, maximal monotone mappings, second-order subderivatives, measurable selections and normal integrands.
The changes in this 3rd printing mainly concern various typographical corrections, and reference omissions that came to light in the previous printings. Many of these reached the authors' notice through their own re-reading, that of their students and a number of colleagues mentioned in the Preface. The authors also included a few telling examples as well as improved a few statements, with slightly weaker assumptions or have strengthened the conclusions in a couple of instances.
Citește tot Restrânge

Preț: 109362 lei

Preț vechi: 133368 lei
-18% Nou

Puncte Express: 1640

Preț estimativ în valută:
19349 22542$ 16897£

Carte tipărită la comandă

Livrare economică 19 ianuarie-02 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540627722
ISBN-10: 3540627723
Pagini: 752
Ilustrații: XII, 736 p.
Dimensiuni: 160 x 241 x 46 mm
Greutate: 1.22 kg
Ediția:1998
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Max and Min.- Convexity.- Cones and Cosmic Closure.- Set Convergence.- Set-Valued Mappings.- Variational Geometry.- Epigraphical Limits.- Subderivatives and Subgradients.- Lipschitzian Properties.- Subdifferential Calculus.- Dualization.- Monotone Mappings.- Second-Order Theory.- Measurability.

Notă biografică

Both authors have long worked with applications of convex, and later nonconvex, analysis to problems in optimization. Both are recipients of the Dantzig Prize (awarded by SIAM and the Mathematical Programming Society): Rockafellar in 1982 and Wets in 1994.


Textul de pe ultima copertă

From its origins in the minimization of integral functionals, the notion of 'variations' has evolved greatly in connection with applications in optimization, equilibrium, and control. It refers not only to constrained movement away from a point, but also to modes of perturbation and approximation that are best describable by 'set convergence', variational convergence of functions and the like. This book develops a unified framework and, in finite dimension, provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, maximal monotone mappings, second-order subderivatives, measurable selections and normal integrands.
The changes in this 3rd  printing mainly concern various typographical corrections, and reference omissions that came to light in the previous printings. Many of these reached the authors' notice through their own re-reading, that of their students and a number of colleagues mentioned in the Preface. The authors also included a few telling examples as well as improved a few statements, with slightly weaker assumptions or have strengthened the conclusions in a couple of instances.

Caracteristici

Includes corrections, some simplifications and some additional comments