Tools for Statistical Inference
Autor Martin A. Tanneren Limba Engleză Paperback – 27 sep 2011
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 696.03 lei 6-8 săpt. | |
| Springer – 27 sep 2011 | 696.03 lei 6-8 săpt. | |
| Hardback (1) | 699.51 lei 6-8 săpt. | |
| Springer – 26 iun 1996 | 699.51 lei 6-8 săpt. |
Preț: 696.03 lei
Preț vechi: 848.82 lei
-18% Nou
Puncte Express: 1044
Preț estimativ în valută:
123.14€ • 143.68$ • 107.67£
123.14€ • 143.68$ • 107.67£
Carte tipărită la comandă
Livrare economică 17-31 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461284710
ISBN-10: 1461284716
Pagini: 220
Ilustrații: VIII, 208 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.34 kg
Ediția:Third Edition 1996
Editura: Springer
Locul publicării:New York, NY, United States
ISBN-10: 1461284716
Pagini: 220
Ilustrații: VIII, 208 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.34 kg
Ediția:Third Edition 1996
Editura: Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Introduction.- Exercises.- 2. Normal Approximations to Likelihoods and to Posteriors.- 2.1. Likelihood/Posterior Density.- 2.2. Specification of the Prior.- 2.3. Maximum Likelihood.- 2.4. Normal-Based Inference.- 2.5. The ?-Method (Propagation of Errors).- 2.6. Highest Posterior Density Regions.- Exercises.- 3. Nonnormal Approximations to Likelihoods and Posteriors.- 3.1. Numerical Integration.- 3.2. Posterior Moments and Marginalization Based on Laplace’s Method.- 3.3. Monte Carlo Methods.- Exercises.- 4. The EM Algorithm.- 4.1. Introduction.- 4.2. Theory.- 4.3. EM in the Exponential Family.- 4.4. Standard Errors in the Context of EM.- 4.5. Monte Carlo Implementation of the E-Step.- 4.6. Acceleration of EM (Louis’ Turbo EM).- 4.7. Facilitating the M-Step.- Exercises.- 5. The Data Augmentation Algorithm.- 5.1. Introduction and Motivation.- 5.2. Computing and Sampling from the Predictive Distribution.- 5.3. Calculating the Content and Boundary of the HPD Region.- 5.4. Remarks on the General Implementation of the Data Augmentation Algorithm.- 5.5. Overview of the Convergence Theory of Data Augmentation.- 5.6. Poor Man’s Data Augmentation Algorithms.- 5.7. Sampling/Importance Resampling (SIR).- 5.8. General Imputation Methods.- 5.9. Further Importance Sampling Ideas.- 5.10. Sampling in the Context of Multinomial Data.- Exercises.- 6. Markov Chain Monte Carlo: The Gibbs Sampler and the Metropolis Algorithm.- 6.1. Introduction to the Gibbs Sampler.- 6.2. Examples.- 6.3. Assessing Convergence of the Chain.- 6.4. The Griddy Gibbs Sampler.- 6.5. The Metropolis Algorithm.- 6.6. Conditional Inference via the Gibbs Sampler.- Exercises.- References.