The Dilworth Theorems: Selected Papers of Robert P. Dilworth: Contemporary Mathematicians
Autor Bogart, Kung, Freeseen Limba Engleză Paperback – 30 iul 2013
Din seria Contemporary Mathematicians
- 18%
Preț: 1068.01 lei - 15%
Preț: 634.69 lei - 18%
Preț: 1769.33 lei - 18%
Preț: 1196.15 lei - 18%
Preț: 2036.10 lei - 18%
Preț: 1211.14 lei -
Preț: 396.88 lei - 15%
Preț: 643.80 lei - 18%
Preț: 954.40 lei - 15%
Preț: 659.54 lei - 18%
Preț: 1353.99 lei - 18%
Preț: 1750.69 lei - 15%
Preț: 626.06 lei - 15%
Preț: 583.62 lei - 15%
Preț: 650.86 lei - 18%
Preț: 1196.15 lei - 18%
Preț: 945.92 lei - 18%
Preț: 1775.72 lei - 15%
Preț: 583.29 lei -
Preț: 389.65 lei - 18%
Preț: 940.47 lei -
Preț: 386.52 lei -
Preț: 418.16 lei -
Preț: 430.91 lei -
Preț: 388.57 lei - 15%
Preț: 642.87 lei - 15%
Preț: 655.58 lei - 18%
Preț: 2915.17 lei
Preț: 390.81 lei
Nou
Puncte Express: 586
Preț estimativ în valută:
69.16€ • 81.09$ • 60.73£
69.16€ • 81.09$ • 60.73£
Carte tipărită la comandă
Livrare economică 10-24 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781489935601
ISBN-10: 1489935606
Pagini: 492
Ilustrații: XXVI, 465 p. 2 illus.
Dimensiuni: 178 x 254 x 26 mm
Greutate: 0.84 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Contemporary Mathematicians
Locul publicării:Boston, MA, United States
ISBN-10: 1489935606
Pagini: 492
Ilustrații: XXVI, 465 p. 2 illus.
Dimensiuni: 178 x 254 x 26 mm
Greutate: 0.84 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Contemporary Mathematicians
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
Chain Partitions in Ordered Sets.- A Decomposition Theorem for Partially Ordered Sets.- Some Combinatorial Problems on Partially Ordered Sets.- The Impact of the Chain Decomposition Theorem on Classical Combinatorics.- Dilworth’s Decomposition Theorem in the Infinite Case.- Effective Versions of the Chain Decomposition Theorem.- Complementation.- Lattices with Unique Complements.- On Complemented Lattices.- Uniquely Complemented Lattices.- On Orthomodular Lattices.- Decomposition Theory.- Lattices with Unique Irreducible Decompositions.- The Arithmetical Theory of Birkhoff Lattices.- Ideals in Birkhoff Lattices.- Decomposition Theory for Lattices without Chain Conditions.- Note on the Kurosch-Ore Theorem.- Structure and Decomposition Theory of Lattices.- Dilworth’s Work on Decompositions in Semimodular Lattices.- The Consequences of Dilworth’s Work on Lattices with Unique Irreducible Decompositions.- Exchange Properties for Reduced Decompositions in Modular Lattices.- The Impact of Dilworth’s Work on Semimodular Lattices on the Kurosch-Ore Theorem.- Modular and Distributive Lattices.- The Imbedding Problem for Modular Lattices.- Proof of a Conjecture on Finite Modular Lattices.- Distributivity in Lattices.- Aspects of distributivity.- The Role of Gluing Constructions in Modular Lattice Theory.- Dilworth’s Covering Theorem for Modular Lattices.- Geometric and Semimodular Lattices.- Dependence Relations in a Semi-Modular Lattice.- A Counterexample to the Generalization of Sperner’s Theorem.- Dilworth’s Completion, Submodular Functions, and Combinatorial Optimization.- Dilworth Truncations of Geometric Lattices.- The Sperner Property in Geometric and Partition Lattices.- Multiplicative Lattices.- Abstract Residuation over Lattices.- Residuated Lattices.-Non-Commutative Residuated Lattices.- Non-Commutative Arithmetic.- Abstract Commutative Ideal Theory.- Dilworth’s Early Papers on Residuated and Multiplicative Lattices.- Abstract Ideal Theory: Principals and Particulars.- Representation and Embedding Theorems for Noether Lattices and r-Lattices.- Miscellaneous Papers.- The Structure of Relatively Complemented Lattices.- The Normal Completion of the Lattice of Continuous Functions.- A Generalized Cantor Theorem.- Generators of lattice varieties.- Lattice Congruences and Dilworth’s Decomposition of Relatively Complemented Lattices.- The Normal Completion of the Lattice of Continuous Functions.- Cantor Theorems for Relations.- Ideal and Filter Constructions in Lattice Varieties.- Two Results from “Algebraic Theory of Lattices”.- Dilworth’s Proof of the Embedding Theorem.- On the Congruence Lattice of a Lattice.