Symbolic and Quantitative Approaches to Reasoning and Uncertainty
Editat de Anthony Hunter, Simon D. Parsonsen Limba Engleză Paperback – 16 iun 1999
Preț: 327.12 lei
Preț vechi: 408.89 lei
-20% Nou
Puncte Express: 491
Preț estimativ în valută:
57.89€ • 67.51$ • 50.82£
57.89€ • 67.51$ • 50.82£
Carte tipărită la comandă
Livrare economică 15-29 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540661313
ISBN-10: 354066131X
Pagini: 416
Ilustrații: IX, 402 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.63 kg
Ediția:1999
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 354066131X
Pagini: 416
Ilustrații: IX, 402 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.63 kg
Ediția:1999
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
On the Dynamics of Default Reasoning.- Nonmonotonic and Paraconsistent Reasoning: From Basic Entailments to Plausible Relations.- A Comparison of Systematic and Local Search Algorithms for Regular CNF Formulas.- Query-answering in Prioritized Default Logic.- Updating Directed Belief Networks.- Inferring Causal Explanations.- A Critique of Inductive Causation.- Connecting Lexicographic with Maximum Entropy Entailment.- Avoiding Non-Ground Variables.- Anchoring Symbols to Vision Data by Fuzzy Logic.- Filtering vs Revision and Update: let us Debate!.- Irrelevance and Independence Axioms in Quasi-Bayesian Theory.- Assessing the value of a candidate.- Learning Default Theories.- Knowledge Representation for Inductive Learning.- Handling Inconsistency Efficiently in the Incremental Construction of Stratified Belief Bases.- Rough Knowledge Discovery and Applications.- Gradient Descent Training of Bayesian Networks.- Open Default Theories over Closed Domains.- Shopbot Economics.- Optimized Algorithm for Learning Bayesian Network from Data.- Merging with Integrity Constraints.- Boolean-like Interpretation of Sugeno Integral.- An Alternative to Outward Propagation for Dempster-Shafer Belief Functions.- On bottom-up pre-processing techniques for automated default reasoning.- Probabilisitc Logic Programming under Maximum Entropy.- Lazy Propagation and Independence of Causal Influence.- A Monte Carlo Algorithm for Combining Dempster-Shafer Belief Based on Approximate Pre-Computation.- An Extension of a lInguistic Negation Model allowing us to Deny Nuanced Property Combinations.- Argumentation and Qualitative Decision Making.- Handling Different Forms of Uncertainty in Regression Analysis: A Fuzzy Belief Structure Approach.- State Recognition in Discrete Dynamical Systems using PetriNets and Evidence Theory.- Robot Navigation and Map Building with the Event Calculus.- Information Fusion in the Context of Stock Index Prediction.- Defeasible Goals.- Logical Deduction using the Local Computation Framework.
Caracteristici
Includes supplementary material: sn.pub/extras