Stochastic Approximation Methods for Constrained and Unconstrained Systems: Applied Mathematical Sciences, cartea 26
Autor H.J. Kushner, D.S. Clarken Limba Engleză Paperback – 3 aug 1978
Din seria Applied Mathematical Sciences
- 20%
Preț: 817.22 lei - 24%
Preț: 818.89 lei - 15%
Preț: 470.68 lei -
Preț: 489.79 lei - 15%
Preț: 471.44 lei - 18%
Preț: 969.60 lei - 18%
Preț: 713.59 lei -
Preț: 380.46 lei - 15%
Preț: 462.89 lei - 18%
Preț: 764.22 lei - 18%
Preț: 815.14 lei - 18%
Preț: 1771.10 lei - 15%
Preț: 471.78 lei - 18%
Preț: 701.95 lei - 18%
Preț: 754.81 lei - 15%
Preț: 678.47 lei - 18%
Preț: 1083.25 lei - 18%
Preț: 923.84 lei - 20%
Preț: 728.29 lei -
Preț: 414.07 lei -
Preț: 382.20 lei - 18%
Preț: 1090.76 lei - 24%
Preț: 741.98 lei - 18%
Preț: 869.26 lei - 15%
Preț: 612.44 lei - 24%
Preț: 874.54 lei - 18%
Preț: 867.25 lei - 15%
Preț: 573.87 lei - 15%
Preț: 620.13 lei - 15%
Preț: 635.00 lei - 24%
Preț: 1001.05 lei - 18%
Preț: 905.62 lei -
Preț: 527.92 lei -
Preț: 182.75 lei -
Preț: 383.96 lei - 15%
Preț: 618.64 lei - 15%
Preț: 508.48 lei -
Preț: 397.45 lei -
Preț: 375.44 lei
Preț: 372.31 lei
Nou
Puncte Express: 558
Preț estimativ în valută:
65.88€ • 77.25$ • 57.86£
65.88€ • 77.25$ • 57.86£
Carte tipărită la comandă
Livrare economică 09-23 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387903415
ISBN-10: 0387903410
Pagini: 263
Ilustrații: X, 263 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.39 kg
Ediția:Softcover reprint of the original 1st ed. 1978
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 0387903410
Pagini: 263
Ilustrații: X, 263 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.39 kg
Ediția:Softcover reprint of the original 1st ed. 1978
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I. Introduction.- 1.1. General Remarks.- 1.2. The Robbins-Monro Process.- 1.3. A “Continuous” Process Version of Section 2.- 1.4. Regulation of a Dynamical System; a simple example.- 1.5. Function Minimization: The Kiefer-Wolfowitz Procedure.- 1.6. Constrained Problems.- 1.7. An Economics Example.- II. Convergence w.p.1 for Unconstrained Systems.- 2.1. Preliminaries and Motivation.- 2.2. The Robbins-Monro and Kiefer-Wolfowitz Algorithms: Conditions and Discussion.- 2.3. Convergence Proofs for RM and KW-like Procedures.- 2.4. A General Robbins-Monro Process: “Exogenous Noise”.- 2.5. A General RM Process; State Dependent Noise.- 2.5.1. Extensions and Localizations of Theorem 2.5.2.- 2.6. Some Applications.- 2.7. Mensov-Rademacher Estimates.- III. Weak Convergence of Probability Measures.- IV. Weak Convergence for Unconstrained Systems.- 4.1. Conditions and General Discussion.- 4.2. The Robbins-Monro and Kiefer-Wolfowitz Procedures.- 4.3. A General Robbins-Monro Process: Exogenous Noise.- 4.4. A General RM Process: State Dependent Noise.- 4.5. The Identification Problem.- 4.6. A Counter-Example to Tightness.- 4.7. Boundedness of {Xn} and Tightness of {Xn(•)}.- V. Convergence w.p.1 For Constrained Systems.- 5.1. A Penalty-Multiplier Algorithm for Equality Constraints.- 5.2. A Lagrangian Method for Inequality Constraints.- 5.3. A Projection Algorithm.- 5.4. A Penalty-Multiplier Method for Inequality Constraints.- VI. Weak Convergence: Constrained Systems.- 6.1. A Multiplier Type Algorithm for Equality Constraints.- 6.2. The Lagrangian Method.- 6.3. A Projection Algorithm.- 6.4. A Penalty-Multiplier Algorithm for Inequality Constraints.- VII. Rates of Convergence.- 7.1. The Problem Formulation.- 7.2. Conditions and Discussions.- 7.3. Rates of Convergence for Case 1,the KW Algorithm.- 7.4. Discussion of Rates of Convergence for Two KW Algorithms.