Stochastic Algorithms for Visual Tracking: Probabilistic Modelling and Stochastic Algorithms for Visual Localisation and Tracking: Distinguished Dissertations
Autor John MacCormicken Limba Engleză Paperback – 16 sep 2011
Din seria Distinguished Dissertations
- 20%
Preț: 299.17 lei - 15%
Preț: 609.22 lei - 15%
Preț: 620.55 lei - 20%
Preț: 628.77 lei - 20%
Preț: 622.77 lei - 20%
Preț: 956.27 lei - 20%
Preț: 623.22 lei - 20%
Preț: 563.33 lei - 20%
Preț: 616.56 lei - 20%
Preț: 315.62 lei - 20%
Preț: 312.92 lei - 20%
Preț: 890.95 lei - 20%
Preț: 614.83 lei - 20%
Preț: 615.94 lei - 20%
Preț: 652.98 lei - 20%
Preț: 612.94 lei - 20%
Preț: 618.46 lei - 20%
Preț: 615.76 lei - 20%
Preț: 316.11 lei - 20%
Preț: 313.24 lei
Preț: 615.45 lei
Preț vechi: 769.31 lei
-20% Nou
Puncte Express: 923
Preț estimativ în valută:
108.90€ • 127.88$ • 95.59£
108.90€ • 127.88$ • 95.59£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781447111764
ISBN-10: 1447111761
Pagini: 188
Ilustrații: IX, 174 p.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.27 kg
Ediția:Softcover reprint of the original 1st ed. 2002
Editura: SPRINGER LONDON
Colecția Springer
Seria Distinguished Dissertations
Locul publicării:London, United Kingdom
ISBN-10: 1447111761
Pagini: 188
Ilustrații: IX, 174 p.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.27 kg
Ediția:Softcover reprint of the original 1st ed. 2002
Editura: SPRINGER LONDON
Colecția Springer
Seria Distinguished Dissertations
Locul publicării:London, United Kingdom
Public țintă
ResearchCuprins
1 Introduction and background.- 1.1 Overview.- 1.2 Active contours for visual tracking.- 2 The Condensation algorithm.- 2.1 The basic idea.- 2.2 Formal definitions.- 2.3 Operations on particle sets.- 2.4 The Condensation theorem.- 2.5 The relation to factored sampling, or “where did the proof go?”.- 2.6 “Good” particle sets and the effective sample size.- 2.7 A brief history of Condensation.- 2.8 Some alternatives to Condensation.- 3 Contour likelihoods.- 3.1 A generative model for image features.- 3.2 Background models and the selection of measurement lines.- 3.3 A continuous analogue of the contour likelihood ratio.- 4 Object localisation and tracking with contour likelihoods.- 4.1 A brief survey of object localisation.- 4.2 Object localisation by factored sampling.- 4.3 Estimating the number of targets.- 4.4 Learning the prior.- 4.5 Random sampling: some traps for the unwary.- 4.6 Tracker initialisation by factored sampling.- 4.7 Tracking using Condensation and the contour likelihoods.- 5 Modelling occlusions using the Markov likelihood.- 5.1 Detecting occluded objects.- 5.2 The problem with the independence assumption.- 5.3 The Markov generative model.- 5.4 Prior for occlusions.- 5.5 Realistic assessment of multiple targets.- 5.6 Improved discrimination with a single target.- 5.7 Faster convergence using importance sampling.- 5.8 Random samples using MelvIe.- 5.9 Calculating the partition functions.- 5.10 Further remarks.- 6 A probabilistic exclusion principle for multiple objects.- 6.1 Introduction.- 6.2 A generative model with an exclusion principle.- 6.3 Tracking multiple wire-frame objects.- 6.4 Tracking multiple opaque objects.- 7 Partitioned sampling.- 7.1 The need for partitioned sampling.- 7.2 Weighted resampling.- 7.3 Basic partitioned sampling.-7.4 Branched partitioned sampling.- 7.5 Performance of partitioned sampling.- 7.6 Partitioned sampling for articulated objects.- 8 Conelusion?.- Appendix A.- A.1 Measures and Metrics on the configuration space.- A.2 Proof of the interior-exterior likelihood.- A.3 Del Moral’s resampling lemma and its consequences.- Appendix B.- B.1 Summary Of Notation.
Caracteristici
Includes supplementary material: sn.pub/extras