Cantitate/Preț
Produs

Statistical Modeling and Simulation for Experimental Design and Machine Learning Applications: Selected Contributions from SimStat 2019 and Invited Papers: Contributions to Statistics

Editat de Jürgen Pilz, Viatcheslav B. Melas, Arne Bathke
en Limba Engleză Hardback – 20 oct 2023
This volume presents a selection of articles on statistical modeling and simulation, with a focus on different aspects of statistical estimation and testing problems, the design of experiments, reliability and queueing theory, inventory analysis, and the interplay between statistical inference, machine learning methods and related applications. The refereed contributions originate from the 10th International Workshop on Simulation and Statistics, SimStat 2019, which was held in Salzburg, Austria, September 2–6, 2019, and were either presented at the conference or developed afterwards, relating closely to the topics of the workshop. The book is intended for statisticians and Ph.D. students who seek current developments and applications in the field.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 112225 lei  38-44 zile
  Springer – 20 oct 2024 112225 lei  38-44 zile
Hardback (1) 117428 lei  6-8 săpt.
  Springer International Publishing – 20 oct 2023 117428 lei  6-8 săpt.

Din seria Contributions to Statistics

Preț: 117428 lei

Preț vechi: 143204 lei
-18% Nou

Puncte Express: 1761

Preț estimativ în valută:
20776 24205$ 18143£

Carte tipărită la comandă

Livrare economică 20 ianuarie-03 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031400544
ISBN-10: 3031400542
Pagini: 265
Ilustrații: X, 265 p. 85 illus., 56 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.56 kg
Ediția:1st ed. 2023
Editura: Springer International Publishing
Colecția Springer
Seria Contributions to Statistics

Locul publicării:Cham, Switzerland

Cuprins

Part I Invited Papers. - 1. Likelihood Ratios in Forensics: What They Are and What They Are Not. - 2. MANOVA for Large Number of Treatments. - 3. Pollutant Dispersion Simulation by Means of a Stochastic Particle Model and a Dynamic Gaussian Plume Model. - 4. On an Alternative Trigonometric Strategy for Statistical Modeling. - Part II Design of Experiments. - 5. Incremental Construction of Nested Designs Based on Two-Level Fractional Factorial Designs. - 6. A Study of L-Optimal Designs for the Two-Dimensional Exponential Model. - 7. Testing for Randomized Block Single-Case Designs by Combined Permutation Tests with Multivariate Mixed Data. - 8. Adaptive Design Criteria Motivated by a Plug-In Percentile Estimator. - Part III Queueing and Inventory Analysis. - 9. On a Parametric Estimation for a Convolution of Exponential Densities. - 10. Statistical Estimation with a Known Quantile and Its Application in a Modified ABC-XYZ Analysis. - Part IV Machine Learning and Applications. - 11. A Study of Design of Experiments and Machine Learning Methods to Improve Fault Detection Algorithms. - 12. Microstructure Image Segmentation Using Patch-Based Clustering Approach. - 13. Clustering and Symptom Analysis in Binary Data with Application. - 14. Big Data for Credit Risk Analysis: Efficient Machine Learning Models Using PySpark.

Notă biografică

Jürgen Pilz is Professor Emeritus at the Department of Statistics at the Alpen-Adria University Klagenfurt in Austria. His research areas include Bayesian statistics, spatial statistics, environmental and industrial statistics, statistical quality control and design of experiments.Viatcheslav B. Melas is a Professor at the Department of Stochastic Simulation at the St. Petersburg State University, Russia. His research areas include experimental design, stochastic simulation and regression analysis, with a focus on functional approaches to optimal experimental design.
Arne Bathke is Full Professor of Statistics at the Paris Lodron University Salzburg, Austria. His main research interests are related to nonparametric and multivariate statistics applied in different fields, from social sciences to biomedicine and engineering.

Textul de pe ultima copertă

This volume presents a selection of articles on statistical modeling and simulation, with a focus on different aspects of statistical estimation and testing problems, the design of experiments, reliability and queueing theory, inventory analysis, and the interplay between statistical inference, machine learning methods and related applications. The refereed contributions originate from the 10th International Workshop on Simulation and Statistics, SimStat 2019, which was held in Salzburg, Austria, September 2–6, 2019, and were either presented at the conference or developed afterwards, relating closely to the topics of the workshop. The book is intended for statisticians and Ph.D. students who seek current developments and applications in the field.

Caracteristici

Presents current developments in statistical modeling and simulation Focuses on experimental design and machine learning applications Features invited contributions

Descriere

Descriere de la o altă ediție sau format:
This volume presents a selection of articles on statistical modeling and simulation, with a focus on different aspects of statistical estimation and testing problems, the design of experiments, reliability and queueing theory, inventory analysis, and the interplay between statistical inference, machine learning methods and related applications.