Statistical Mechanics & Random Walks: Principles, Processes & Applications
Editat de Abram Skogseid, Vicente Fasanoen Limba Engleză Hardback – 18 apr 2012
Preț: 2122.61 lei
Preț vechi: 3055.14 lei
-31%
Puncte Express: 3184
Preț estimativ în valută:
375.53€ • 436.60$ • 325.51£
375.53€ • 436.60$ • 325.51£
Carte disponibilă
Livrare economică 11-25 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781614709664
ISBN-10: 1614709661
Pagini: 651
Ilustrații: illustrations
Dimensiuni: 180 x 257 x 40 mm
Greutate: 1.35 kg
Editura: Nova Science Publishers Inc
Colecția Nova Science Publishers, Inc (US)
Locul publicării:United States
ISBN-10: 1614709661
Pagini: 651
Ilustrații: illustrations
Dimensiuni: 180 x 257 x 40 mm
Greutate: 1.35 kg
Editura: Nova Science Publishers Inc
Colecția Nova Science Publishers, Inc (US)
Locul publicării:United States
Cuprins
Application of Stochastic Approaches to Modelling Suspension Flow in Porous Media; Unusual Brownian Motion; Anomalous Diffusion of Particles in Edge Plasma Turbulence in Tokamaks & Random & Lévy Walk Distributions; Subordinated Gaussian Processes, the Log-Return Principles; Random Walk Models in Biophysical Sciences: Particle Transport in the Human Respiratory Tract; Nonlinear Generalization of Fluctuation-Dissipation Theorem for Levy Flights Diffusion & its Scaling; Scaling & Correlation of Time Recurrence in Fracture Systems; On an Integral Related to Two-Dimensional Random Walk; Non-Equilibrium Dynamics & Diffusion Processes; Hierarchies of Quantum Evolution Equations & Dynamics of Many Particle Correlations; Recent Results on Branching Random Walks; Global Random Walk Algorithm for Diffusion Processes; Asymptotics for Random Walks in the Quarter Plane with Queueing Applications; Random Walk in a Finite Directed Graph Subject to a Synchronizing Road Coloring; Solving Partial Differential Equations Via Random Walks: A Review; Applications of Random Walks for the Analysis of Graphs, Musical Compositions, & Language Phylogeny; The Stock Size & the Predicitability of Returns; A Random Walk Model Related to the Clustering of Membrane Receptors; The Random Flight & the Persistent Random Walk; Transport on Lattices with Random Traps: Diffusion, Relaxation & Fluctuations.