Statistical and Neural Classifiers
Autor Sarunas Raudysen Limba Engleză Hardback – 29 ian 2001
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 676.50 lei 6-8 săpt. | |
| SPRINGER LONDON – 9 apr 2014 | 676.50 lei 6-8 săpt. | |
| Hardback (1) | 955.73 lei 6-8 săpt. | |
| SPRINGER LONDON – 29 ian 2001 | 955.73 lei 6-8 săpt. |
Preț: 955.73 lei
Preț vechi: 1194.66 lei
-20% Nou
Puncte Express: 1434
Preț estimativ în valută:
169.12€ • 198.31$ • 148.52£
169.12€ • 198.31$ • 148.52£
Carte tipărită la comandă
Livrare economică 02-16 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781852332976
ISBN-10: 1852332972
Pagini: 295
Ilustrații: XXIII, 295 p. 40 illus.
Dimensiuni: 161 x 241 x 27 mm
Greutate: 0.62 kg
Ediția:2001 edition
Editura: SPRINGER LONDON
Locul publicării:London, United Kingdom
ISBN-10: 1852332972
Pagini: 295
Ilustrații: XXIII, 295 p. 40 illus.
Dimensiuni: 161 x 241 x 27 mm
Greutate: 0.62 kg
Ediția:2001 edition
Editura: SPRINGER LONDON
Locul publicării:London, United Kingdom
Public țintă
ResearchCuprins
1. Quick Overview.- 1.1 The Classifier Design Problem.- 1.2 Single Layer and Multilayer Perceptrons.- 1.3 The SLP as the Euclidean Distance and the Fisher Linear Classifiers.- 1.4 The Generalisation Error of the EDC and the Fisher DF.- 1.5 Optimal Complexity — The Scissors Effect.- 1.6 Overtraining in Neural Networks.- 1.7 Bibliographical and Historical Remarks.- 2. Taxonomy of Pattern Classification Algorithms.- 2.1 Principles of Statistical Decision Theory.- 2.2 Four Parametric Statistical Classifiers.- 2.3 Structures of the Covariance Matrices.- 2.4 The Bayes Predictive Approach to Design Optimal Classification Rules.- 2.5. Modifications of the Standard Linear and Quadratic DF.- 2.6 Nonparametric Local Statistical Classifiers.- 2.7 Minimum Empirical Error and Maximal Margin Linear Classifiers.- 2.8 Piecewise-Linear Classifiers.- 2.9 Classifiers for Categorical Data.- 2.10 Bibliographical and Historical Remarks.- 3. Performance and the Generalisation Error.- 3.1 Bayes, Conditional, Expected, and Asymptotic Probabilities of Misclassification.- 3.2 Generalisation Error of the Euclidean Distance Classifier.- 3.3 Most Favourable and Least Favourable Distributions of the Data.- 3.4 Generalisation Errors for Modifications of the Standard Linear Classifier.- 3.5 Common Parameters in Different Competing Pattern Classes.- 3.6 Minimum Empirical Error and Maximal Margin Classifiers.- 3.7 Parzen Window Classifier.- 3.8 Multinomial Classifier.- 3.9 Bibliographical and Historical Remarks.- 4. Neural Network Classifiers.- 4.1 Training Dynamics of the Single Layer Perceptron.- 4.2 Non-linear Decision Boundaries.- 4.3 Training Peculiarities of the Perceptrons.- 4.4 Generalisation of the Perceptrons.- 4.5 Overtraining and Initialisation.- 4.6 Tools to Control Complexity.- 4.7 TheCo-Operation of the Neural Networks.- 4.8 Bibliographical and Historical Remarks.- 5. Integration of Statistical and Neural Approaches.- 5.1 Statistical Methods or Neural Nets?.- 5.2 Positive and Negative Attributes of Statistical Pattern Recognition.- 5.3 Positive and Negative Attributes of Artificial Neural Networks.- 5.4 Merging Statistical Classifiers and Neural Networks.- 5.5 Data Transformations for the Integrated Approach.- 5.6 The Statistical Approach in Multilayer Feed-forward Networks.- 5.7 Concluding and Bibliographical Remarks.- 6. Model Selection.- 6.1 Classification Errors and their Estimation Methods.- 6.2 Simplified Performance Measures.- 6.3 Accuracy of Performance Estimates.- 6.4 Feature Ranking and the Optimal Number of Feature.- 6.5 The Accuracy of the Model Selection.- 6.6 Additional Bibliographical Remarks.- Appendices.- A.1 Elements of Matrix Algebra.- A.2 The First Order Tree Type Dependence Model.- A.3 Temporal Dependence Models.- A.4 Pikelis Algorithm for Evaluating Means and Variances of the True, Apparent and Ideal Errors in Model Selection.- A.5 Matlab Codes (the Non-Linear SLP Training, the First Order Tree Dependence Model, and Data Whitening Transformation).- References.
Caracteristici
Covers the state of the art in this important area Shows the reader how neural network classifiers actually work