Stabilization Problems with Constraints: Analysis and Computational Aspects
Autor Vladimir A Bushenkov, Georgi V Smirnoven Limba Engleză Paperback – 29 apr 1998
The text is divided into three parts. Part I contains some background material. Part II is devoted to behavior of control systems, taking examples from mechanics to illustrate the theory. Finally, Part III deals with nonlocal stabilization problems, including a study of the global stabilization problem.
Preț: 763.85 lei
Preț vechi: 1115.48 lei
-32% Nou
Puncte Express: 1146
Preț estimativ în valută:
135.20€ • 158.22$ • 118.28£
135.20€ • 158.22$ • 118.28£
Comandă specială
Livrare economică 02-16 ianuarie 26
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789056991418
ISBN-10: 9056991418
Pagini: 302
Dimensiuni: 174 x 246 x 23 mm
Greutate: 0.76 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
ISBN-10: 9056991418
Pagini: 302
Dimensiuni: 174 x 246 x 23 mm
Greutate: 0.76 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Public țintă
ProfessionalCuprins
PART I - Foundations: Convex Analysis
1. Differential Equations and Control Systems 2. Computational Methods of Convex Analysis
PART II - Local Stabilization Problems: Stabilization Problem
1. Controllable Linear Systems 2. Unilateral Stabilization
PART III - Nonlocal Stabilization Problems: Stabilization to Sets
1. Global Stabilization Problem 2. Stabilization of Uncertain Systems
1. Differential Equations and Control Systems 2. Computational Methods of Convex Analysis
PART II - Local Stabilization Problems: Stabilization Problem
1. Controllable Linear Systems 2. Unilateral Stabilization
PART III - Nonlocal Stabilization Problems: Stabilization to Sets
1. Global Stabilization Problem 2. Stabilization of Uncertain Systems
Notă biografică
Vladimir A Bushenkov (Author), Georgi V Smirnov (Author)
Descriere
The main emphasis of this book is on the methods of stabilization, rather than optimization and stability theory. Presenting and demonstrating stabilizer design techniques that can be used to solve stabilization problems with constraints.