Spectral Theory of Self-Adjoint Operators in Hilbert Space: Mathematics and its Applications, cartea 5
Autor Michael Sh. Birman, M.Z. Solomjaken Limba Engleză Hardback – 31 mai 1987
Din seria Mathematics and its Applications
-
Preț: 398.01 lei - 20%
Preț: 613.70 lei -
Preț: 419.52 lei -
Preț: 435.00 lei - 15%
Preț: 678.08 lei - 15%
Preț: 411.63 lei - 15%
Preț: 680.49 lei - 15%
Preț: 508.87 lei - 18%
Preț: 702.82 lei -
Preț: 438.14 lei - 15%
Preț: 434.03 lei - 15%
Preț: 615.32 lei -
Preț: 461.04 lei - 20%
Preț: 737.41 lei - 15%
Preț: 420.02 lei - 15%
Preț: 618.78 lei -
Preț: 430.56 lei - 15%
Preț: 615.63 lei -
Preț: 471.35 lei - 18%
Preț: 1186.02 lei - 15%
Preț: 678.08 lei -
Preț: 437.94 lei - 18%
Preț: 705.56 lei -
Preț: 462.26 lei - 18%
Preț: 705.75 lei - 20%
Preț: 373.35 lei - 20%
Preț: 486.11 lei - 18%
Preț: 1014.51 lei - 15%
Preț: 618.03 lei - 15%
Preț: 671.45 lei -
Preț: 378.05 lei - 15%
Preț: 626.52 lei - 15%
Preț: 622.59 lei -
Preț: 374.71 lei
Preț: 671.92 lei
Preț vechi: 790.49 lei
-15% Nou
Puncte Express: 1008
Preț estimativ în valută:
118.88€ • 139.76$ • 104.12£
118.88€ • 139.76$ • 104.12£
Carte tipărită la comandă
Livrare economică 28 ianuarie-11 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789027721792
ISBN-10: 9027721793
Pagini: 324
Ilustrații: XVI, 302 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.63 kg
Ediția:1987
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9027721793
Pagini: 324
Ilustrații: XVI, 302 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.63 kg
Ediția:1987
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. Preliminaries.- 1. Metric Spaces. Normed Spaces.- 2. Algebras and ?-Algebras of Sets.- 3. Countably Additive Functions and Measures.- 4. Measurable Functions.- 5. Integration.- 6. Function Spaces.- 2. Hilbert Space Geometry. Continuous Linear Operators.- 1. Hilbert Space. The Space L2.- 2. Orthonormal Systems.- 3. Projection Theorem. Orthogonal Expansions and Orthogonal Sums.- 4. Linear Functionals and Sesqui-linear Forms. Weak Convergence.- 5. The Algebra of Continuous Operators on H.- 6. Compact Operators.- 7. Bounded Self-adjoint Operators.- 8. Orthogonal Projections.- 9. Examples of Hilbert Spaces and Orthonormal Systems.- 10. Examples of Continuous Functionals and Operators.- 3. Unbounded Linear Operators.- 1. General Notions. Graph of an Operator.- 2. Closed Operators. Closable Operators.- 3. Adjoint Operator.- 4. Domination of Operators.- 5. Invariant Subspaces.- 6. Reducing Subspaces.- 7. Defect Number, Spectrum, and Resolvent of a Closed Operator.- 8. Skew Decompositions. Skew Reducibility.- 9. Spectral Theory of Compact Operators.- 10. Connection between the Spectral Properties of TS and ST.- 4. Symmetric and Isometric Operators.- 1. Symmetric and Self-adjoint Operators. Deficiency Indices.- 2. Isometric and Unitary Operators.- 3. Cayley Transform.- 4. Extensions of Symmetric Operators. Von Neumann’s Formulae.- 5. The Operator T*T. Normal Operators.- 6. Classification of Spectral Points.- 7. Multiplication by the Independent Variable.- 8. Differentiation Operator.- 5. Spectral Measure. Integration.- 1. Basic Notions.- 2. Extension of a Spectral Measure. Product Measures.- 3. Integral with Respect to a Spectral Measure. Bounded Functions.- 4. Integral with Respect to a Spectral Measure. Unbounded Functions.- 5. An Example of Commuting Spectral Measureswhose Product is not Countably Additive.- 6 Spectral Resolutions.- 1. Statements of Spectral Theorems. Functions of Operators.- 2. Spectral Theorem for Unitary Operators.- 3. Spectral Theorem for Self-adjoint Operators.- 4. Spectral Resolution of a One-parameter Unitary Group.- 5. Joint Spectral Resolution for a Finite Family of Commuting Self-adjoint Operators.- 6. Spectral Resolutions of Normal Operators.- 7 Functional Model and the Unitary Invariants of Self-adjoint Operators.- 1. Direct Integral of Hilbert Spaces.- 2. Multiplication Operators and Decomposable Operators.- 3. Generating Systems and Spectral Types.- 4. Unitary Invariants of Spectral Measure.- 5. Unitary Invariants of Self-adjoint Operators.- 6. Decomposition of a Spectral Measure into the Absolutely Continuous and the Singular Part.- 8 Some Applications of Spectral Theory.- 1. Polar Decomposition of a Closed Operator.- 2. Differential Equations of Evolution on Hilbert Space.- 3. Fourier Transform.- 4. Multiplications on L2 (Rm, Cm).- 5. Differential Operators with Constant Coefficients.- 6. Examples of Differential Operators.- 9 Perturbation Theory.- 1. Essential Spectrum. Compact Perturbations.- 2. Compact Self-adjoint and Normal Operators.- 3. Finite-dimensional Perturbations and Extensions.- 4. Continuous Perturbations.- 10 Semibounded Operators and Forms.- 1. Closed Positive Definite Forms.- 2. Semibounded Forms.- 3. Friedrichs Method of Extension of a Semibounded Operator to a Self-adjoint Operator.- 4. Fractional Powers of Operators. The Heinz Inequality.- 5. Examples of Quadratic Forms. The Sturm-Liouville Operator on [?1, 1].- 6. Examples of Quadratic Forms. One-dimensional Schrödinger Operator.- 11 Classes of Compact Operators.- 1. Canonical Representation and Singular Numbers of CompactOperators.- 2. Nuclear Operators. Trace of an Operator.- 3. Hilbert-Schmidt Operators.- 4. Sp Classes.- 5. Additional Information on Singular Numbers of Compact Operators.- 6. ?p Classes.- 7. Lidskii’s Theorem.- 8. Examples of Compact Operators.- 12 Commutation Relations of Quantum Mechanics.- 1. Statement of the Problem. Auxiliary Material.- 2. Properties of (B)-systems and (C)-systems.- 3. Representations of the Bose Relations. The Case m = 1.- 4. Representations of the Bose Relations. General Case.- 5. Representations of the Canonical Relations.