Similarity Methods for Differential Equations: Applied Mathematical Sciences, cartea 13
Autor G.W. Bluman, J.D. Coleen Limba Engleză Paperback – 2 dec 1974
Din seria Applied Mathematical Sciences
- 18%
Preț: 764.22 lei - 18%
Preț: 1187.21 lei - 20%
Preț: 728.29 lei - 15%
Preț: 471.78 lei - 18%
Preț: 754.81 lei - 18%
Preț: 1083.25 lei - 18%
Preț: 1090.76 lei - 56%
Preț: 495.89 lei - 15%
Preț: 620.13 lei - 18%
Preț: 701.95 lei - 24%
Preț: 741.41 lei - 18%
Preț: 923.84 lei -
Preț: 413.75 lei -
Preț: 380.24 lei - 15%
Preț: 678.47 lei - 18%
Preț: 869.26 lei - 18%
Preț: 1771.10 lei - 24%
Preț: 818.26 lei - 15%
Preț: 612.44 lei - 20%
Preț: 816.01 lei - 18%
Preț: 867.25 lei - 24%
Preț: 1000.28 lei -
Preț: 527.52 lei - 15%
Preț: 573.87 lei - 18%
Preț: 905.62 lei -
Preț: 182.75 lei -
Preț: 383.96 lei - 15%
Preț: 618.64 lei - 15%
Preț: 508.48 lei -
Preț: 397.45 lei -
Preț: 368.59 lei - 18%
Preț: 1356.28 lei - 15%
Preț: 683.72 lei -
Preț: 380.46 lei - 18%
Preț: 977.74 lei -
Preț: 387.82 lei - 18%
Preț: 1329.58 lei - 18%
Preț: 1085.72 lei
Preț: 378.95 lei
Puncte Express: 568
Preț estimativ în valută:
67.02€ • 78.64$ • 58.13£
67.02€ • 78.64$ • 58.13£
Carte tipărită la comandă
Livrare economică 09-23 martie
Specificații
ISBN-13: 9780387901077
ISBN-10: 0387901078
Pagini: 333
Ilustrații: IX, 333 p.
Dimensiuni: 168 x 240 x 18 mm
Greutate: 0.55 kg
Ediția:Softcover reprint of the original 1st ed. 1974
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 0387901078
Pagini: 333
Ilustrații: IX, 333 p.
Dimensiuni: 168 x 240 x 18 mm
Greutate: 0.55 kg
Ediția:Softcover reprint of the original 1st ed. 1974
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Ordinary Differential Equations.- 1.0. Ordinary Differential Equations.- 1.1. Example: Global Similarity Transformation, Invariance and Reduction to Quadrature.- 1.2. Simple Examples of Groups of Transformations; Abstract Definition.- 1.3. One-Parameter Group in the Plane.- 1.4. Proof That a One-Parameter Group Essentially Contains Only One Infinitesimal Transformation and Is Determined by It.- 1.5. Transformations; Symbol of the Infinitesimal Transformation U.- 1.6. Invariant Functions and Curves.- 1.7. Important Classes of Transformations.- 1.8. Applications to Differential Equations; Invariant Families of Curves.- 1.9. First-Order Differential Equations Which Admit a Group; Integrating Factor; Commutator.- 1.10. Geometric Interpretation of the Integrating Factor.- 1.11. Determination of First-Order Equations Which Admit a Given Group.- 1.12. One-Parameter Group in Three Variables; More Variables.- 1.13. Extended Transformation in the Plane.- 1.14. A Second Criterion That a First-Order Differential Equation Admits a Group.- 1.15. Construction of All Differential Equations of First-Order Which Admit a Given Group.- 1.16. Criterion That a Second-Order Differential Equation Admits a Group.- 1.17. Construction of All Differential Equations of Second-Order Which Admit a Given Group.- 1.18. Examples of Application of the Method.- 2. Partial Differential Equations.- 2.0. Partial Differential Equations.- 2.1. Formulation of Invariance for the Special Case of One dependent and Two Independent Variables.- 2.2. Formulation of Invariance in General.- 2.3. Fundamental Solution of the Heat Equation; Dimensional Analysis.- 2.4. Fundamental Solutions of Heat Equation Global Affinity.- 2.5. The Relationship Between the Use of Dimensional Analysis and Stretching Groups to Reduce theNumber of Variables of a Partial Differential Equation.- 2.6. Use of Group Invariance to Obtain New Solutions from Given Solutions.- 2.7. The General Similarity Solution of the Heat Equation.- 2.8. Applications of the General Similarity Solution of the Heat Equation,.- 2.9. -Axially-Symmetric Wave Equation.- 2.10. Similarity Solutions of the One-Dimensional Fokker-Planck Equation.- 2.11. The Green’s Function for an Instantaneous Line Particle Source Diffusing in a Gravitational Field and Under the Influence of a Linear Shear Wind — An Example of a P.D.E. in Three Variables Invariant Under a Two-Parameter Group.- 2.12. Infinite Parameter Groups — Derivation of the Poisson Kernel.- 2.13. Far Field of Transonic Flow.- 2.14. Nonlinear and Other Examples.- 2.15. Construction of Partial Differential Equations Invariant Under a Given Multi-parameter Group.- Appendix. Solution of Quasilinear First-Order Partial Differential Equations.- Bibliography. Part 1.- Bibliography. Part 2.