Riemann Surfaces: Graduate Texts in Mathematics, cartea 71
Autor Hershel M. Farkas, Irwin Kraen Limba Engleză Hardback – 23 dec 1991
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 457.22 lei 6-8 săpt. | |
| Springer – 29 oct 2012 | 457.22 lei 6-8 săpt. | |
| Hardback (1) | 626.06 lei 6-8 săpt. | |
| Springer – 23 dec 1991 | 626.06 lei 6-8 săpt. |
Din seria Graduate Texts in Mathematics
- 13%
Preț: 388.03 lei - 15%
Preț: 388.38 lei - 15%
Preț: 485.89 lei -
Preț: 432.88 lei -
Preț: 424.00 lei - 17%
Preț: 395.72 lei -
Preț: 417.02 lei -
Preț: 260.79 lei - 15%
Preț: 395.04 lei -
Preț: 391.06 lei - 15%
Preț: 466.31 lei -
Preț: 374.50 lei -
Preț: 439.55 lei - 15%
Preț: 585.17 lei - 15%
Preț: 573.07 lei -
Preț: 484.64 lei -
Preț: 437.36 lei -
Preț: 313.43 lei - 17%
Preț: 395.55 lei - 15%
Preț: 464.09 lei -
Preț: 481.70 lei -
Preț: 370.01 lei - 15%
Preț: 578.90 lei - 15%
Preț: 389.14 lei - 15%
Preț: 534.02 lei -
Preț: 432.26 lei -
Preț: 479.83 lei - 15%
Preț: 525.56 lei - 15%
Preț: 383.22 lei -
Preț: 363.58 lei - 15%
Preț: 394.09 lei - 15%
Preț: 391.76 lei - 15%
Preț: 392.73 lei - 15%
Preț: 394.07 lei - 15%
Preț: 392.77 lei - 15%
Preț: 628.10 lei - 15%
Preț: 393.27 lei - 15%
Preț: 429.75 lei - 15%
Preț: 535.19 lei - 17%
Preț: 396.37 lei -
Preț: 383.97 lei - 18%
Preț: 726.32 lei - 19%
Preț: 436.86 lei - 17%
Preț: 428.08 lei - 15%
Preț: 571.96 lei - 15%
Preț: 569.57 lei -
Preț: 445.45 lei - 15%
Preț: 576.36 lei
Preț: 626.06 lei
Preț vechi: 736.54 lei
-15%
Puncte Express: 939
Preț estimativ în valută:
110.82€ • 129.28$ • 95.96£
110.82€ • 129.28$ • 95.96£
Carte tipărită la comandă
Livrare economică 26 februarie-12 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387977034
ISBN-10: 0387977031
Pagini: 366
Ilustrații: XVI, 366 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.72 kg
Ediția:2nd ed. 1992
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387977031
Pagini: 366
Ilustrații: XVI, 366 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.72 kg
Ediția:2nd ed. 1992
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
0 An Overview.- 0.1. Topological Aspects, Uniformization, and Fuchsian Groups.- 0.2. Algebraic Functions.- 0.3. Abelian Varieties.- 0.4. More Analytic Aspects.- I Riemann Surfaces.- I.1. Definitions and Examples.- I.2. Topology of Riemann Surfaces.- I.3. Differential Forms.- I.4. Integration Formulae.- II Existence Theorems.- II. 1. Hilbert Space Theory—A Quick Review.- II.2. Weyl’s Lemma.- II.3. The Hilbert Space of Square Integrable Forms.- II.4. Harmonic Differentials.- II.5. Meromorphic Functions and Differentials.- III Compact Riemann Surfaces.- III. 1. Intersection Theory on Compact Surfaces.- III.2. Harmonic and Analytic Differentials on Compact Surfaces.- III.3. Bilinear Relations.- III.4. Divisors and the Riemann-Roch Theorem.- III.5. Applications of the Riemann-Roch Theorem.- III.6. Abel’s Theorem and the Jacobi Inversion Problem.- III.7. Hyperelliptic Riemann Surfaces.- III.8. Special Divisors on Compact Surfaces.- III.9. Multivalued Functions.- III. 10. Projective Imbeddings.- III. 11. More on the Jacobian Variety.- III. 12. Torelli’s Theorem.- IV Uniformization.- IV. 1. More on Harmonic Functions (A Quick Review).- IV.2. Subharmonic Functions and Perron’s Method.- IV.3. A Classification of Riemann Surfaces.- IV.4. The Uniformization Theorem for Simply Connected Surfaces.- IV.5. Uniformization of Arbitrary Riemann Surfaces.- IV.6. The Exceptional Riemann Surfaces.- IV. 7. Two Problems on Moduli.- IV.8. Riemannian Metrics.- IV.9. Discontinuous Groups and Branched Coverings.- IV. 10. Riemann-Roch—An Alternate Approach.- IV. 11. Algebraic Function Fields in One Variable.- V Automorphisms of Compact Surfaces—Elementary Theory.- V.l. Hurwitz’s Theorem.- V.2. Representations of the Automorphism Group on Spaces of Differentials.- V.3. Representationof Aut M on H1(M).- V.4. The Exceptional Riemann Surfaces.- VI Theta Functions.- VI. 1. The Riemann Theta Function.- VI.2. The Theta Functions Associated with a Riemann Surface.- VI.3. The Theta Divisor.- VII Examples.- VII. 1. Hyperelliptic Surfaces (Once Again).- VII.2. Relations Among Quadratic Differentials.- VII.3. Examples of Non-hyperelliptic Surfaces.- VII.4. Branch Points of Hyperelliptic Surfaces as Holomorphic Functions of the Periods.- VII.5. Examples of Prym Differentials.- VII.6. The Trisecant Formula.