Rewriting Techniques and Applications
Editat de Tobias Nipkowen Limba Engleză Paperback – 11 mar 1998
Preț: 324.24 lei
Preț vechi: 405.31 lei
-20% Nou
Puncte Express: 486
Preț estimativ în valută:
57.37€ • 66.93$ • 50.16£
57.37€ • 66.93$ • 50.16£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540643012
ISBN-10: 354064301X
Pagini: 360
Ilustrații: X, 346 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.55 kg
Ediția:1998
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 354064301X
Pagini: 360
Ilustrații: X, 346 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.55 kg
Ediția:1998
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Origin tracking in term rewriting.- Simultaneous critical pairs and Church-Rosser property.- Church-Rosser theorems for abstract reduction modulo an equivalence relation.- Automatic monoids versus monoids with finite convergent presentations.- Decidable and undecidable second-order unification problems.- On the exponent of periodicity of minimal solutions of context equations.- Unification in extensions of shallow equational theories.- Unification and matching in process algebras.- E-unification for subsystems of S4.- Solving disequations modulo some class of rewrite systems.- About proofs by consistency.- Normalization of S-terms is decidable.- Decidable approximations of sets of descendants and sets of normal forms.- Algorithms and reductions for rewriting problems.- The decidability of simultaneous rigid E-unification with one variable.- Ordering constraints over feature trees expressed in second-order monadic logic.- Co-definite set constraints.- Modularity of termination using dependency pairs.- Termination of associative-commutative rewriting by dependency pairs.- Termination transformation by tree lifting ordering.- Towards automated termination proofs through “freezing”.- Higher-order rewriting and partial evaluation.- SN combinators and partial combinatory algebras.- Coupling saturation-based provers by exchanging positive/negative information.- An on-line problem database.