Regression Analysis: Theory, Methods, and Applications: Springer Texts in Statistics
Autor Ashish Sen, Muni Srivastavaen Limba Engleză Hardback – 13 iul 1990
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 613.62 lei 6-8 săpt. | |
| Springer – 23 dec 2011 | 613.62 lei 6-8 săpt. | |
| Hardback (1) | 754.50 lei 6-8 săpt. | |
| Springer – 13 iul 1990 | 754.50 lei 6-8 săpt. |
Din seria Springer Texts in Statistics
-
Preț: 459.05 lei -
Preț: 421.81 lei - 18%
Preț: 876.30 lei - 18%
Preț: 723.43 lei - 15%
Preț: 629.48 lei - 13%
Preț: 516.54 lei - 15%
Preț: 572.89 lei - 17%
Preț: 539.00 lei - 18%
Preț: 683.98 lei - 18%
Preț: 819.36 lei - 18%
Preț: 853.09 lei - 18%
Preț: 868.56 lei - 18%
Preț: 714.35 lei - 18%
Preț: 1082.81 lei - 15%
Preț: 461.73 lei - 20%
Preț: 837.14 lei - 18%
Preț: 694.76 lei -
Preț: 246.11 lei - 15%
Preț: 717.54 lei - 15%
Preț: 650.73 lei -
Preț: 481.34 lei - 15%
Preț: 556.38 lei - 18%
Preț: 962.26 lei - 15%
Preț: 675.40 lei -
Preț: 379.71 lei -
Preț: 388.40 lei - 23%
Preț: 741.10 lei - 18%
Preț: 861.13 lei - 15%
Preț: 577.64 lei -
Preț: 387.47 lei - 19%
Preț: 587.70 lei - 15%
Preț: 630.77 lei -
Preț: 407.06 lei - 15%
Preț: 656.52 lei -
Preț: 393.02 lei - 18%
Preț: 730.12 lei - 15%
Preț: 577.64 lei - 15%
Preț: 510.98 lei -
Preț: 388.78 lei - 18%
Preț: 782.88 lei - 15%
Preț: 620.07 lei - 15%
Preț: 565.38 lei -
Preț: 384.68 lei - 5%
Preț: 635.74 lei -
Preț: 381.55 lei
Preț: 754.50 lei
Preț vechi: 920.12 lei
-18% Nou
Puncte Express: 1132
Preț estimativ în valută:
133.51€ • 156.56$ • 117.25£
133.51€ • 156.56$ • 117.25£
Carte tipărită la comandă
Livrare economică 13-27 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387972114
ISBN-10: 0387972110
Pagini: 348
Ilustrații: XVI, 348 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.68 kg
Ediția:1990
Editura: Springer
Colecția Springer
Seria Springer Texts in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387972110
Pagini: 348
Ilustrații: XVI, 348 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.68 kg
Ediția:1990
Editura: Springer
Colecția Springer
Seria Springer Texts in Statistics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
1 Introduction.- 1.1 Relationships.- 1.2 Determining Relationships: A Specific Problem.- 1.3 The Model.- 1.4 Least Squares.- 1.5 Another Example and a Special Case.- 1.6 When Is Least Squares a Good Method?.- 1.7 A pleasure of Fit for Simple Regression.- 1.8 Mean and Variance of b0 and b1.- 1.9 Confidence Intervals and Tests.- 1.10 Predictions.- 2 Multiple Regression.- 2.1 Introduction.- 2.2 Regression Model in Matrix Notation.- 2.3 Least Squares Estimates.- 2.4 Examples 31 2..- 2.6 Mean and Variance of Estimates Under G-M Conditions.- 2.7 Estimation of ?.- 2.8 Measures of Fit 39?2.- 2.9 The Gauss-Markov Theorem.- 2.10 The Centered Model.- 2.11 Centering and Scaling.- 2.12 *Constrained Least Squares.- 3 Tests and Confidence Regions.- 3.1 Introduction.- 12 Linear Hypothesis.- 3.3 *Likelihood Ratio Test.- 3.4 *Distribution of Test Statistic.- 3.5 Two Special Cases.- 3.6 Examples.- 3.7 Comparison of Repression Equations.- 3.8 Confidence Intervals and Regions.- 4 Indicator Variables.- 4.1 Introduction.- 4.2 A Simple Application.- 4.3 Polychotomous Variables.- 4.4 Continuous and Indicator Variables.- 4.5 Broken Line Regression.- 4.6 Indicators as Dependent Variables.- 5 The Normality Assumption.- 5.1 Introduction.- 5.2 Checking for Normality.- 5.3 Invoking Large Sample Theory.- 5.4 *Bootstrapping.- 5.5 *Asymptotic Theory.- 6 Unequal Variances.- 6.1 Introduction.- 6.2 Detecting Heteroscedasticity.- 6.3 Variance Stabilizing Transformations.- 6.4 Weighing.- 7 *Correlated Errors.- 7.1 Introduction.- 7.2 Generalized Least Squares: Case When ? Is Known.- 7.3 Estimated Generalized Least Squares.- 7.4 Nested Errors.- 7.5 The Growth Curve Model.- 7.6 Serial Correlation.- 7.7 Spatial Correlation.- 8 Outliers and Influential Observations.- 8.1 Introduction.- 8.2 The Leverage.- 8.3The Residuals.- 8.4 Detecting Outliers and Points That Do Not Belong to the Model 157.- 8.5 Influential Observations.- 8.6 Examples.- 9 Transformations.- 9.1 Introduction.- 9.2 Some Common Transformations.- 9.3 Deciding on the Need for Transformations.- 9.4 Choosing Transformations.- 10 Multicollinearity.- 10.1 Introduction.- 10.2 Multicollinearity and Its Effects.- 10.3 Detecting Multicollinearity.- 10.4 Examples.- 11 Variable Selection.- 11.1 Introduction.- 11.2 Some Effects of Dropping Variables.- 11.3 Variable Selection Procedures.- 11.4 Examples.- 12 *Biased Estimation.- 12.1 Introduction 2..- 12.2 Principal Component. Regression.- 12.3 Ridge Regression.- 12.4 Shrinkage Estimator.- A Matrices.- A.1 Addition and Multiplication.- A.2 The Transpose of a Matrix.- A.3 Null and Identity Matrices.- A.4 Vectors.- A.5 Rank of a Matrix.- A.6 Trace of a Matrix.- A.7 Partitioned Matrices.- A.8 Determinants.- A.9 Inverses.- A.10 Characteristic Roots and Vectors.- A.11 Idempotent Matrices.- A.12 The Generalized Inverse.- A.13 Quadratic Forms.- A.14 Vector Spaces.- Problems.- B Random Variables and Random Vectors.- B.1 Random Variables.- B.1.1 Independent. Random Variables.- B.1.2 Correlated Random Variables.- B.1.3 Sample Statistics.- B.1.4 Linear Combinations of Random Variables.- B.2 Random Vectors.- B.3 The Multivariate Normal Distribution.- B.4 The Chi-Square Distributions.- B.5 The F and t Distributions.- B.6 Jacobian of Transformations.- B.7 Multiple Correlation.- Problems.- C Nonlinear Least Squares.- C.1 Gauss-Newton Type Algorithms.- C.1.1 The Gauss-Newton Procedure.- C.1.2 Step Halving.- C.1.3 Starting Values and Derivatives.- C.1.4 Marquardt Procedure.- C.2 Some Other Algorithms.- C.2.1 Steepest Descent Method.- C.2.2 Quasi-Newton Algorithms.- C.2.3 The Simplex Method.- C.2.4 Weighting.- C.3 Pitfalls.- C.4 Bias, Confidence Regions and Measures of Fit.- C.5 Examples.- Problems.- Tables.- References.- Author Index.
Recenzii
"I found this to be the most complete and up-to-date regression text I have come across...this text has much to offer."
-Journal of the American Statistical
Association
"The material is presented in a lucid and easy-to-understand style...can be ranked as one of the best textbooks on regression in the market."
-mathermatical Reviews
"...a successful mix of theory and practice...It will serve nicely to teach both the logic behind regression and the data-analytic use of regression."
-SIAM Review
-Journal of the American Statistical
Association
"The material is presented in a lucid and easy-to-understand style...can be ranked as one of the best textbooks on regression in the market."
-mathermatical Reviews
"...a successful mix of theory and practice...It will serve nicely to teach both the logic behind regression and the data-analytic use of regression."
-SIAM Review
Caracteristici
Includes supplementary material: sn.pub/extras Request lecturer material: sn.pub/lecturer-material