Quadratic Programming with Computer Programs: Advances in Applied Mathematics
Autor Michael J. Besten Limba Engleză Hardback – 18 ian 2017
Din seria Advances in Applied Mathematics
- 20%
Preț: 448.64 lei - 9%
Preț: 837.43 lei - 9%
Preț: 1657.05 lei - 15%
Preț: 584.24 lei - 8%
Preț: 459.73 lei -
Preț: 426.20 lei - 15%
Preț: 680.45 lei - 15%
Preț: 441.20 lei - 15%
Preț: 480.87 lei - 15%
Preț: 562.67 lei - 18%
Preț: 811.70 lei - 15%
Preț: 691.53 lei - 15%
Preț: 633.50 lei - 18%
Preț: 823.42 lei - 15%
Preț: 423.86 lei - 18%
Preț: 887.82 lei - 15%
Preț: 438.07 lei - 15%
Preț: 425.95 lei - 15%
Preț: 681.13 lei - 20%
Preț: 608.00 lei - 9%
Preț: 795.00 lei - 18%
Preț: 769.76 lei - 18%
Preț: 1325.53 lei - 18%
Preț: 765.76 lei - 18%
Preț: 758.40 lei - 15%
Preț: 564.31 lei - 18%
Preț: 973.69 lei - 18%
Preț: 769.13 lei - 18%
Preț: 752.14 lei - 15%
Preț: 519.29 lei - 15%
Preț: 615.24 lei - 15%
Preț: 691.53 lei - 18%
Preț: 752.14 lei - 9%
Preț: 758.71 lei - 15%
Preț: 690.14 lei
Preț: 534.99 lei
Preț vechi: 749.13 lei
-29%
Puncte Express: 802
Preț estimativ în valută:
94.74€ • 110.65$ • 82.30£
94.74€ • 110.65$ • 82.30£
Carte indisponibilă temporar
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781498735759
ISBN-10: 1498735754
Pagini: 400
Ilustrații: 25 Illustrations, black and white
Dimensiuni: 178 x 254 x 26 mm
Greutate: 0.88 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Advances in Applied Mathematics
ISBN-10: 1498735754
Pagini: 400
Ilustrații: 25 Illustrations, black and white
Dimensiuni: 178 x 254 x 26 mm
Greutate: 0.88 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Advances in Applied Mathematics
Cuprins
Geometrical Examples
Geometry of a QP: Examples
Geometrical Examples
Optimality Conditions
Geometry of Quadratic Functions
Nonconvex QP’s
Portfolio Opimization
The Efficient Frontier
The Capital Market Line
QP Subject to Linear Equality Constraints
QP Preliminaries
QP Unconstrained: Theory
QP Unconstrained: Algorithm 1
QP with Linear Equality Constraints: Theory
QP with Linear Equality Constraints: Alg. 2
Quadratic Programming
QP Optimality Conditions
QP Duality
Unique and Alternate Optimal Solutions
Sensitivity Analysis
QP Solution Algorithms
A Basic QP Algorithm: Algorithm 3
Determination of an Initial Feasible Point
An Efficient QP Algorithm: Algorithm 4
Degeneracy and Its Resolution
A Dual QP Algorithm
Algorithm 5
General QP and Parametric QP Algorithms
A General QP Algorithm: Algorithm 6
A General Parametric QP Algorithm: Algorithm 7
Symmetric Matrix Updates
Simplex Method for QP and PQP
Simplex Method for QP: Algorithm 8
Simplex Method for Parametric QP: Algorithm 9
Nonconvex Quadratic Programming
Optimality Conditions
Finding a Strong Local Minimum: Algorithm 10
Geometry of a QP: Examples
Geometrical Examples
Optimality Conditions
Geometry of Quadratic Functions
Nonconvex QP’s
Portfolio Opimization
The Efficient Frontier
The Capital Market Line
QP Subject to Linear Equality Constraints
QP Preliminaries
QP Unconstrained: Theory
QP Unconstrained: Algorithm 1
QP with Linear Equality Constraints: Theory
QP with Linear Equality Constraints: Alg. 2
Quadratic Programming
QP Optimality Conditions
QP Duality
Unique and Alternate Optimal Solutions
Sensitivity Analysis
QP Solution Algorithms
A Basic QP Algorithm: Algorithm 3
Determination of an Initial Feasible Point
An Efficient QP Algorithm: Algorithm 4
Degeneracy and Its Resolution
A Dual QP Algorithm
Algorithm 5
General QP and Parametric QP Algorithms
A General QP Algorithm: Algorithm 6
A General Parametric QP Algorithm: Algorithm 7
Symmetric Matrix Updates
Simplex Method for QP and PQP
Simplex Method for QP: Algorithm 8
Simplex Method for Parametric QP: Algorithm 9
Nonconvex Quadratic Programming
Optimality Conditions
Finding a Strong Local Minimum: Algorithm 10
Recenzii
This book is devoted to quadratic programming (QP) and parametric quadratic programming (PQP). It is a textbook which may be useful for students and many scientific researchers as well. It is richly illustrated with many examples and gures.The book starts with the presentation of some geometric facts on unconstrained QP problems, followed by the introduction of some QP models arising in portfolio optimization. The latter reflects the author's experience with such types of applications.The rest of the book is organized logically as is usually done in QP: unconstrained convex QP problems, QP with linear equality constraints, QP with linear inequality constraints, duality in quadratic programming, dual QP algorithms, general QP and PQP algorithms, the simplex method for QP and PQP and nonconvex QP.
Andrzej Stachurski~Mathematical Reviews, 2017
Andrzej Stachurski~Mathematical Reviews, 2017
Notă biografică
Michael J. Best is Professor Emeritus in the Department of Combinatorics and Optimization at the University of Waterloo. He is only the second person to receive a B.Math degree from the University of Waterloo and holds a PhD from UC-Berkeley. Michael is also the author of Portfolio Optimzation, published by CRC Press.
Descriere
Quadratic programming is a mathematical technique that allows for the optimization of a quadratic function in several variables. QP is a subset of Operations Research and is the next higher lever of sophistication than Linear Programming. It is a key mathematical tool in Portfolio Optimization and structural plasticity. This is useful in Civil Engineering as well as Statistics.