Cantitate/Preț
Produs

Progress in Cryptology - INDOCRYPT 2023

Editat de Anupam Chattopadhyay, Shivam Bhasin, Stjepan Picek, Chester Rebeiro
en Limba Engleză Paperback – 29 mar 2024
The two-volume proceedings constitutes the refereed proceedings of the 24th International Conference on Progress in Cryptology, INDOCRYPT 2023, Goa, India, in December 2023. 
The 26 full papers were carefully reviewed and selected from 74 submissions. They are organized in topical sections as follows: 
Part One: Symmetric-key cryptography, Hash functions, Authenticated Encryption Modes; Elliptic curves, Zero-knowledge proof, Signatures; Attacks.
Part Two: Secure computation, Algorithm hardness, Privacy; Post-quantum cryptography.


Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 40262 lei  6-8 săpt.
  Springer – 29 mar 2024 40262 lei  6-8 săpt.
  Springer – 29 mar 2024 48911 lei  6-8 săpt.

Preț: 40262 lei

Preț vechi: 50327 lei
-20% Nou

Puncte Express: 604

Preț estimativ în valută:
7123 8299$ 6221£

Carte tipărită la comandă

Livrare economică 17-31 ianuarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031562341
ISBN-10: 3031562348
Pagini: 288
Ilustrații: XXII, 264 p. 42 illus., 22 illus. in color.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.44 kg
Ediția:2024
Editura: Springer
Locul publicării:Cham, Switzerland

Cuprins

Secure computation, Algorithm hardness, Privacy.- Threshold-Optimal MPC With Friends and Foes.- Network-Agnostic Perfectly Secure Synchronous Message Transmission Revisited.- Explicit Lower Bounds for Communication Complexity of PSM for Concrete Functions.- Distributed Protocols for Oblivious Transfer and Polynomial Evaluation.- Obfuscating Decision Trees.- Privacy-Preserving Plagiarism Checking.- PURED: A unified framework for resource-hard functions.- Post-quantum cryptography.- Implementing Lattice-Based PQC on Resource-Constrained Processors: A Case Study for Kyber/Saber’s Polynomial Multiplication on ARM CortexM0/M0+.- Algorithmic Views of Vectorized Polynomial Multipliers – NTRU.