Predictive Intelligence in Medicine
Editat de Islem Rekik, Ehsan Adeli, Sang Hyun Park, Celia Cintasen Limba Engleză Paperback – 18 oct 2024
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (3) | 316.59 lei 43-57 zile | |
| Springer Nature Switzerland – 21 sep 2022 | 316.59 lei 43-57 zile | |
| Springer – 14 noi 2025 | 372.99 lei 43-57 zile | |
| Springer – 18 oct 2024 | 382.57 lei 38-44 zile |
Preț: 382.57 lei
Preț vechi: 478.22 lei
-20%
Puncte Express: 574
Preț estimativ în valută:
67.63€ • 80.64$ • 58.66£
67.63€ • 80.64$ • 58.66£
Carte tipărită la comandă
Livrare economică 11-17 martie
Specificații
ISBN-13: 9783031745607
ISBN-10: 3031745604
Pagini: 220
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.34 kg
Editura: Springer
ISBN-10: 3031745604
Pagini: 220
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.34 kg
Editura: Springer
Cuprins
Federated Time-dependent GNN Learning from Brain Connectivity Data with Missing Timepoints.- Bridging the Gap between Deep Learning and Hypothesis-Driven Analysis via Permutation Testing.- Multi-Tracer PET Imaging Using Deep Learning: Applications in Patients with High-Grade Gliomas.- Multiple Instance Neuroimage Transformer.- Intervertebral Disc Labeling With Learning Shape Information, A Look Once Approach.- Mixup augmentation improves age prediction from T1-weighted brain MRI scans.- Diagnosing Knee Injuries from MRI with Transformer Based Deep Learning.- MISS-Net: Multi-view contrastive transformer network for MCI stages prediction using brain 18F-FDG PET imaging.- TransDeepLab: Convolution-Free Transformer-based DeepLab v3+ for Medical Image Segmentation.- Opportunistic hip fracture risk prediction in Men from X-ray: Findings from the Osteoporosis in Men (MrOS) Study.- Weakly-Supervised TILs Segmentation based on Point Annotations using Transfer Learning with Point Detector and Projected-Boundary Regressor.- Discriminative Deep Neural Network for Predicting Knee OsteoArthritis in Early Stage.- Long-Term Cognitive Outcome Prediction in Stroke Patients Using Multi-Task Learning on Imaging and Tabular Data.- Quantifying the Predictive Uncertainty of Regression GNN Models Under Target Domain Shifts.- Investigating the Predictive Reproducibility of Federated Graph Neural Networks using Medical Datasets.- Learning subject-specific functional parcellations from cortical surface measures.- A Triplet Contrast Learning of Global and Local Representations for Unannotated Medical Images.- Predicting Brain Multigraph Population From a Single Graph Template for Boosting One-Shot Classification.- Meta-RegGNN: Predicting Verbal and Full-Scale Intelligence Scores using Graph Neural Networks and Meta-Learning