Particles and Fields: CRM Series in Mathematical Physics
Editat de Gordon W. Semenoff, Luc Vineten Limba Engleză Paperback – 27 sep 2012
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 917.40 lei 43-57 zile | |
| Springer – 27 sep 2012 | 917.40 lei 43-57 zile | |
| Hardback (1) | 923.48 lei 43-57 zile | |
| Springer – 21 dec 1998 | 923.48 lei 43-57 zile |
Din seria CRM Series in Mathematical Physics
- 20%
Preț: 615.31 lei - 18%
Preț: 1192.03 lei - 18%
Preț: 911.78 lei - 18%
Preț: 905.43 lei - 18%
Preț: 1200.39 lei - 15%
Preț: 582.82 lei - 15%
Preț: 562.20 lei - 18%
Preț: 1076.33 lei - 15%
Preț: 617.72 lei - 18%
Preț: 931.03 lei - 18%
Preț: 923.48 lei -
Preț: 394.31 lei -
Preț: 372.67 lei - 15%
Preț: 618.50 lei - 15%
Preț: 628.86 lei - 15%
Preț: 622.73 lei - 18%
Preț: 1344.43 lei
Preț: 917.40 lei
Preț vechi: 1118.78 lei
-18% Nou
Puncte Express: 1376
Preț estimativ în valută:
162.34€ • 190.36$ • 142.57£
162.34€ • 190.36$ • 142.57£
Carte tipărită la comandă
Livrare economică 02-16 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461271338
ISBN-10: 1461271339
Pagini: 508
Ilustrații: XVI, 489 p.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.7 kg
Ediția:Softcover reprint of the original 1st ed. 1999
Editura: Springer
Colecția Springer
Seria CRM Series in Mathematical Physics
Locul publicării:New York, NY, United States
ISBN-10: 1461271339
Pagini: 508
Ilustrații: XVI, 489 p.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.7 kg
Ediția:Softcover reprint of the original 1st ed. 1999
Editura: Springer
Colecția Springer
Seria CRM Series in Mathematical Physics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Recent Developments in Affine Toda Quantum Field Theory.- 1 Introduction.- 2 Classical Integrability and Classical Data.- 3 Aspects of the Quantum Field Theory.- 4 Dual Pairs.- 5 A Word on Solitons.- 6 Other Matters.- 7 References.- 2 A Class of Fermi Liquids.- 1 Introduction.- 2 Four-Legged Diagrams.- 3 A Single-Slice Fermionic Cluster Expansion.- 4 References.- 3 Quantum Groups from Path Integrals.- 1 Classical Field Theory.- 2 Categories, Finite Groups, and Covering Spaces.- 3 Generalized Path Integrals.- 4 The Quantum Group.- 5 References.- 4 Half Transfer Matrices in Solvable Lattice Models.- 1 The Six-Vertex Model.- 2 The Antiferromagnetic Regime.- 3 Corner Transfer Matrix.- 4 Half Transfer Matrix.- 5 Commutation Relations.- 6 Correlation Functions.- 7 Two-Point Functions.- 8 Discussion.- 9 References.- 5 Matrix Models as Integrable Systems.- 1 Introduction.- 2 The Basic Example: Discrete 1-Matrix Model.- 3 Generalized Kontsevich Model.- 4 Kp/Toda ?-Function in Terms of Free Fermions.- 5 ?-Function as a Group-Theoretical Quantity.- 6 Conclusion.- 7 References.- 6 Localization, Equivariant Cohomology, and Integration Formulas 211.- 1 Symplectic Geometry.- 2 Equivariant Cohomology.- 3 Duistermaat-Heckman Integration Formula.- 4 Degeneracies.- 5 Equivariant Characteristic Classes.- 6 Loop Space.- 7 Example: Atiyah-Singer Index Theorem.- 8 Duistermaat-Heckman in Loop Space.- 9 General Integrable Models.- 10 Mathai-Quillen Formalism.- 11 Short Review of Morse Theory.- 12 Equivariant Mathai-Quillen Formalism.- 13 Equivariant Morse Theory.- 14 Loop Space and Morse Theory.- 15 Loop Space and Equivariant Morse Theory.- 16 Poincaré Supersymmetry and Equivariant Cohomology..- 17 References.- 7 Systems of Calogero-Moser Type.- 1 Introduction.- 2 Classical NonrelativisticCalogero-Moser and Toda Systems.- 3 Relativistic Versions at the Classical Level.- 4 Quantum Calogero-Moser and Toda Systems.- 5 Action-Angle Transforms.- 6 Eigenfunction Transforms.- 7 References.- 8 Discrete Gauge Theories.- 1 Broken Symmetry Revisited.- 2 Basics.- 3 Algebraic Structure.- 4 $${\overline D _2}$$ Gauge Theory.- 5 Concluding Remarks and Outlook.- 6 References.- 9 Quantum Hall Fluids as W1+?Minimal Models.- 1 Introduction.- 2 Dynamical Symmetry and Kinematics of Incompressible Fluids.- 3 Existing Theories of Edge Excitations and Experiments.- 4W1+? Minimal Models.- 5 Further Developments.- 6 References.- 10 On the Spectral Theory of Quantum Vertex Operators 469 Pavel I. Etingof.- 1 Basic Definitions.- 2 Spectral Properties of Vertex Operators.- 3 The Semi-Infinite Tensor Product Construction.- 4 Computation of the Leading Eigenvalue and Eigenvector.- 5 References.