The Painlevé Property: One Century Later (CRM Series in Mathematical Physics)

Editat de Robert Conte
Notă GoodReads:
en Limba Engleză Carte Hardback – 29 Sep 1999
Describes many physical phenomena, their analytic solutions, that in many cases are preferable to numerical computation, which may be long, costly and, worst, subject to numerical errors. In addition, the analytic approach provides a global knowledge of the solution, while the numerical approach is always local.
Citește tot Restrânge
Toate formatele și edițiile
Toate formatele și edițiile Preț Express
Carte Paperback (1) 86116 lei  Economic 5-7 săpt.
  Springer – 06 Nov 2012 86116 lei  Economic 5-7 săpt.
Carte Hardback (1) 104292 lei  Economic 5-7 săpt. +43467 lei  10-18 zile
  Springer – 29 Sep 1999 104292 lei  Economic 5-7 săpt. +43467 lei  10-18 zile

Din seria CRM Series in Mathematical Physics

Preț: 104292 lei

Preț vechi: 112142 lei

Puncte Express: 1564

Preț estimativ în valută:
21033 23960$ 18795£

Carte tipărită la comandă

Livrare economică 30 iulie-13 august
Livrare express 05-13 iulie pentru 44466 lei

Preluare comenzi: 021 569.72.76


ISBN-13: 9780387988887
ISBN-10: 0387988882
Pagini: 810
Ilustrații: 1
Dimensiuni: 155 x 235 x 44 mm
Greutate: 1.34 kg
Ediția: 1999
Editura: Springer
Colecția Springer
Seria CRM Series in Mathematical Physics

Locul publicării: New York, NY, United States

Public țintă



1 Singularities of Ordinary Linear Differential Equations and Integrability.- 1 Generalities.- 2 Structure of the Solutions of the Homogeneous Equation Around an Isolated Singular Point.- 3 Weakly Singular Equations (Fuchs).- 4 Thomé’s Equations.- 5 Global Considerations.- 6 References.- 2 Introduction to the Theory of Isomonodromic Deformations of Linear Ordinary Differential Equations with Rational Coefficients.- 1 Introduction.- 2 Isomonodromic Deformations of Linear ODEs with Puchsian Singularities.- 3 The Isomonodromic Deformation Problem for Painlevé VI.- 4 Isomonodromic Deformations of Linear ODEs with Thomé Singularities.- 5 An Isomonodromic Deformation Problem for Painlevé I.- 6 Conclusion.- 7 Appendix A: Matrix Versus Scalar Formalisms and Fuchs’s Theorem.- 8 Appendix B: Asymptotic Power Series.- 9 References.- 3 The Painlevé Approach to Nonlinear Ordinary Differential Equations.- 1 Introduction.- 2 The Meromorphy Assumption.- 3 The True Problems.- 4 The Classical Results (L. Fuchs, Poincaré, Painlevé).- 5 Construction of Necessary Conditions. The Theory.- 6 Construction of Necessary Conditions. The Painlevé Test.- 7 Sufficiency: Explicit Integration Methods.- 8 Conclusion.- 9 References.- 4 Asymptotic Studies of the Painlevé Equations.- 1 Introduction.- 2 Linear and Nonlinear Asymptotic Models.- 3 The First and Second Painlevé Equations.- 4 Global Extensions.- 5 Conclusion.- 6 References.- 5 2-D Quantum and Topological Gravities, Matrix Models, and Integrable Differential Systems.- A 2-D Quantum Gravity.- 1 Introduction.- 2 The One-Matrix Model: Large N Limit.- 3 The One-Matrix Model: Exact Solution.- 4 The Double-Scaling Limit.- 5 Multimatrix Models.- 6 Conclusion.- B 2-D Topological Gravity.- 7 Introduction.- 8 Computing the Kontsevich Integral.- 9 The Kontsevich Integral as T-Function of the KdV Hierarchy.- 10 Main Equivalence Theorem Between Topological and Quantum Gravities.- 11 Conclusion.- 12 References.- 6 Painlevé Transcendents in Two-Dimensional Topological Field Theory.- 1 Algebraic Properties of Correlators in 2-D Topological Field Theories. Moduli of a 2-D TFT and WDW Equations of Associativity.- 2 Equations of Associativity and Probenius Manifolds. Deformed Flat Connection and Its Monodromy at the Origin.- 3 Semisimplicity and Canonical Coordinates.- 4 Stokes Matrices and Classification of Semisimple Probenius Manifolds.- 5 Monodromy Group and Mirror Construction for Semisimple Frobenius Manifolds.- 6 References.- 7 Discrete Painlevé Equations.- 1 Integrable Discrete Systems.- 2 Similarity Reduction and Direct Linearization.- 3 The Painlevé Property for Discrete Systems.- 4 Properties of the Discrete Painlevé Equations.- 5 Monodromy Problems and q-Difference Equations.- 6 References.- 8 Painlevé Analysis for Nonlinear Partial Differential Equations 517.- 1 Introduction.- 2 Integrable Equations.- 3 Painlevé Analysis for PDEs.- 4 Partially Integrable and Nonintegrable Equations.- 5 References.- 9 On Painlevé and Darboux-Halphen-Type Equations.- 1 Introduction.- 2 Painlevé Equations and 1ST.- 3 Darboux-Halphen Systems and Their Linear Problems as Reductions of SDYM.- 4 The Monodromy Evolving System and the Solution of the Generalized DH System.- 5 Discussion.- 6 References.- 10 Symmetry Reduction and Exact Solutions of Nonlinear Partial Differential Equations.- 1 Introduction.- 2 Algorithm for Calculating the Symmetry Group of a Differential System.- 3 Examples of Symmetry Groups.- 4 Symmetry Reduction, Group Invariant Solutions, Partially Invariant Solutions.- 5 Classification of the Subalgebras of a Finite-Dimensional Lie Algebra.- 6 Direct Reductions and Conditional Symmetries.- 7 Conclusions.- 8 References.- 11 Painlevé Equations in Terms of Entire Functions.- 1 Introduction.- 2 Hirota’s Bilinear Method for Soliton Equations.- 3 Bilinear Forms and Similarity Reduction.- 4 Solutions in Terms of Entire Functions.- 5 Discrete Painlevé.- 6 References.- 12 Bäcklund Transformations of Painlevé Equations and Their Applications.- 1 Introduction.- 2 The Second Painlevé Equation.- 3 Rational Solutions of (Pin2) (0-Solutions).- 4 One-Parameter Families of Classical Solutions (1-Solutions).- 5 Algebraic Nonintegrability of (P2).- 6 Higher Analogue of (P2).- 7 The Fourth Painlevé Equation.- 8 Classical Solutions of (P4).- 9 Rational Solutions of (P4).- 10 The Third Painlevé Equation.- 11 Equation (P3) for ? = 0, ?? ? 0.- 12 Equation (P3) for ?? ? 0.- 13 Rational and Classical Solutions of (P3) for ?? ? 0.- 14 The Fifth Painlevé Equation.- 15 The Sixth Painlevé Equation.- 16 References.- 13 The Hamiltonians Associated to the Painlevé Equations.- 1 Introduction.- 2 Hamiltonians and Painlevé Analysis.- 3 The Space of Initial Conditions.- 4 The Irreducibility of PII.- 5 The T-Functions of the Second Painlevé System.- 6 The Painlevé System of Two Variables.- 7 References.- 14 “Completeness” of the Painlevé Test—General Considerations—Open Problems.- 1 Cultures in Mathematics.- 2 The Painlevé Test.- 3 The PolyPainlevé Test.- 4 Asymptotic Expansions.- 5 References.