Optimal Mass Transport on Euclidean Spaces
Autor Francesco Maggien Limba Engleză Hardback – 16 noi 2023
Preț: 419.91 lei
Nou
Puncte Express: 630
Preț estimativ în valută:
74.31€ • 87.13$ • 65.26£
74.31€ • 87.13$ • 65.26£
Carte disponibilă
Livrare economică 10-24 ianuarie 26
Livrare express 27 decembrie 25 - 02 ianuarie 26 pentru 39.51 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781009179706
ISBN-10: 1009179705
Pagini: 316
Dimensiuni: 162 x 230 x 25 mm
Greutate: 0.58 kg
Ediția:Nouă
Editura: Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 1009179705
Pagini: 316
Dimensiuni: 162 x 230 x 25 mm
Greutate: 0.58 kg
Ediția:Nouă
Editura: Cambridge University Press
Locul publicării:New York, United States
Cuprins
Preface; Notation; Part I. The Kantorovich Problem: 1. An introduction to the Monge problem; 2. Discrete transport problems; 3. The Kantorovich problem; Part II. Solution of the Monge Problem with Quadratic Cost: the Brenier-McCann Theorem: 4. The Brenier theorem; 5. First order differentiability of convex functions; 6. The Brenier-McCann theorem; 7. Second order differentiability of convex functions; 8. The Monge-Ampère equation for Brenier maps; Part III. Applications to PDE and the Calculus of Variations and the Wasserstein Space: 9. Isoperimetric and Sobolev inequalities in sharp form; 10. Displacement convexity and equilibrium of gases; 11. The Wasserstein distance W2 on P2(Rn); 12. Gradient flows and the minimizing movements scheme; 13. The Fokker-Planck equation in the Wasserstein space; 14. The Euler equations and isochoric projections; 15. Action minimization, Eulerian velocities and Otto's calculus; Part IV. Solution of the Monge Problem with Linear Cost: the Sudakov Theorem: 16. Optimal transport maps on the real line; 17. Disintegration; 18. Solution to the Monge problem with linear cost; 19. An introduction to the needle decomposition method; Appendix A: Radon measures on Rn and related topics; Appendix B: Bibliographical Notes; Bibliography; Index.
Descriere
A pedagogical introduction to the key ideas and theoretical foundation of optimal mass transport for a graduate course or self-study.