Numerical Methods for Nonlinear Variational Problems: Scientific Computation
Autor Roland Glowinskien Limba Engleză Paperback – 3 oct 2013
"Numerical Methods for Nonlinear Variational Problems", originally published in the Springer Series in Computational Physics, is a classic in applied mathematics and computational physics and engineering. This long-awaited softcover re-edition is still a valuable resource for practitioners in industry and physics and for advanced students.
Din seria Scientific Computation
- 18%
Preț: 855.21 lei - 18%
Preț: 714.52 lei - 18%
Preț: 981.37 lei -
Preț: 385.79 lei -
Preț: 385.64 lei - 20%
Preț: 976.25 lei -
Preț: 371.93 lei - 15%
Preț: 629.35 lei - 18%
Preț: 1065.40 lei -
Preț: 373.24 lei -
Preț: 374.54 lei - 18%
Preț: 913.16 lei - 15%
Preț: 624.14 lei - 18%
Preț: 809.09 lei - 18%
Preț: 906.03 lei - 15%
Preț: 485.76 lei - 15%
Preț: 627.79 lei -
Preț: 374.91 lei -
Preț: 365.82 lei - 18%
Preț: 920.28 lei - 18%
Preț: 1068.14 lei -
Preț: 435.38 lei - 15%
Preț: 624.33 lei -
Preț: 373.40 lei - 18%
Preț: 921.17 lei - 18%
Preț: 1085.59 lei - 18%
Preț: 930.00 lei - 15%
Preț: 673.68 lei - 15%
Preț: 574.94 lei -
Preț: 371.00 lei -
Preț: 379.89 lei -
Preț: 370.46 lei - 18%
Preț: 1063.59 lei - 15%
Preț: 484.80 lei - 15%
Preț: 628.73 lei - 15%
Preț: 619.12 lei - 15%
Preț: 573.38 lei
Preț: 625.75 lei
Preț vechi: 736.17 lei
-15% Nou
Puncte Express: 939
Preț estimativ în valută:
110.71€ • 130.16$ • 96.97£
110.71€ • 130.16$ • 96.97£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783662126158
ISBN-10: 366212615X
Pagini: 512
Ilustrații: XVII, 493 p.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.71 kg
Ediția:Softcover reprint of the original 1st ed. 1984
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 366212615X
Pagini: 512
Ilustrații: XVII, 493 p.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.71 kg
Ediția:Softcover reprint of the original 1st ed. 1984
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
Professional/practitionerCuprins
I Generalities on Elliptic Variational Inequalities and on Their Approximation.- II Application of the Finite Element Method to the Approximation of Some Second-Order EVI.- III On the Approximation of Parabolic Variational Inequalities.- IV Applications of Elliptic Variational Inequality Methods to the Solution of Some Nonlinear Elliptic Equations.- V Relaxation Methods and Applications.- VI Decomposition-Coordination Methods by Augmented Lagrangian: Applications.- VII Least-Squares Solution of Nonlinear Problems: Application to Nonlinear Problems in Fluid Dynamics.- Appendix I A Brief Introduction to Linear Variational Problems.- 1. Introduction.- 2. A Family of Linear Variational Problems.- 3. Internal Approximation of Problem (P).- 4. Application to the Solution of Elliptic Problems for Partial Differential Operators.- 5. Further Comments: Conclusion.- Appendix II A Finite Element Method with Upwinding for Second-Order Problems with Large First Order Terms.- 1. Introduction.- 2. The Model Problem.- 3. A Centered Finite Element Approximation.- 4. A Finite Element Approximation with Upwinding.- 5. On the Solution of the Linear System Obtained by Upwinding.- 6. Numerical Experiments.- 7. Concluding Comments.- Appendix III Some Complements on the Navier-Stokes Equations and Their Numerical Treatment.- 1. Introduction.- 4. Further Comments on the Boundary Conditions.- 5. Decomposition Properties of the Continuous and Discrete Stokes Problems of Sec. 4. Application to Their Numerical Solution.- 6. Further Comments.- Some Illustrations from an Industrial Application.- Glossary of Symbols.- Author Index.
Caracteristici
Long awaited softcover re-publication of a highly cited Classic in Applied Mathematics and Computational Physics Benefits graduate students and practitioners in applied mathematics, computational physics and engineering With excercises throughout the text