Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images: First Challenge, MyoPS 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings: Lecture Notes in Computer Science, cartea 12554
Editat de Xiahai Zhuang, Lei Lien Limba Engleză Paperback – 19 dec 2020
Din seria Lecture Notes in Computer Science
- 20%
Preț: 426.75 lei - 20%
Preț: 315.62 lei - 20%
Preț: 320.92 lei - 15%
Preț: 426.53 lei - 20%
Preț: 313.87 lei - 20%
Preț: 355.79 lei - 20%
Preț: 355.54 lei - 20%
Preț: 355.18 lei - 20%
Preț: 390.68 lei - 20%
Preț: 392.03 lei - 20%
Preț: 498.95 lei - 20%
Preț: 390.79 lei - 20%
Preț: 495.44 lei - 20%
Preț: 498.80 lei - 20%
Preț: 498.50 lei - 20%
Preț: 355.93 lei - 20%
Preț: 639.52 lei - 20%
Preț: 499.90 lei - 20%
Preț: 498.95 lei - 20%
Preț: 270.68 lei - 20%
Preț: 321.68 lei - 20%
Preț: 391.36 lei - 20%
Preț: 322.09 lei - 20%
Preț: 498.90 lei - 20%
Preț: 312.82 lei - 20%
Preț: 496.73 lei - 20%
Preț: 463.03 lei - 20%
Preț: 531.75 lei - 15%
Preț: 496.40 lei - 20%
Preț: 497.25 lei - 20%
Preț: 498.80 lei - 20%
Preț: 461.86 lei - 20%
Preț: 355.59 lei - 20%
Preț: 324.19 lei -
Preț: 418.19 lei - 20%
Preț: 498.59 lei - 20%
Preț: 391.28 lei - 20%
Preț: 355.69 lei - 15%
Preț: 499.72 lei - 20%
Preț: 499.40 lei - 20%
Preț: 390.42 lei - 20%
Preț: 497.75 lei - 20%
Preț: 326.81 lei - 20%
Preț: 322.32 lei - 20%
Preț: 390.42 lei - 20%
Preț: 458.84 lei - 20%
Preț: 427.09 lei - 20%
Preț: 499.90 lei - 20%
Preț: 320.72 lei
Preț: 314.67 lei
Preț vechi: 393.34 lei
-20% Nou
Puncte Express: 472
Preț estimativ în valută:
55.68€ • 64.94$ • 48.89£
55.68€ • 64.94$ • 48.89£
Carte tipărită la comandă
Livrare economică 15-29 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030656508
ISBN-10: 3030656500
Pagini: 177
Ilustrații: VIII, 177 p. 91 illus., 77 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.27 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
ISBN-10: 3030656500
Pagini: 177
Ilustrații: VIII, 177 p. 91 illus., 77 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.27 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
Cuprins
Stacked BCDU-net with semantic CMR synthesis: application to Myocardial PathologySegmentation challenge.- EfficientSeg: A Simple but Efficient Solution to Myocardial Pathology Segmentation Challenge.- Two-stage Method for Segmentation of the Myocardial Scars and Edema on Multi-sequence Cardiac Magnetic Resonance.- Multi-Modality Pathology Segmentation Framework: Application to Cardiac Magnetic Resonance Images.- Myocardial Edema and Scar Segmentation using a Coarse-to-Fine Framework with Weighted Ensemble.- Exploring ensemble applications for multi-sequence myocardial pathology segmentation.- Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention and Dynamic Resampling.- Fully automated deep learning based segmentation of normal, infarcted and edema regions from multiple cardiac MRI sequences.- CMS-UNet: Cardiac Multi-task Segmentation in MRI with a U-shaped Network.- Automatic Myocardial Scar Segmentation from Multi-Sequence Cardiac MRI using Fully Convolutional Densenet with Inception and Squeeze-Excitation Module.- Dual Attention U-net for Multi-Sequence Cardiac MR Images Segmentation.- Accurate Myocardial Pathology Segmentation with Residual U-Net.- Stacked and Parallel U-Nets with Multi-Output for Myocardial Pathology Segmentation.- Dual-path Feature Aggregation Network Combined Multi-layer Fusion for Myocardial Pathology Segmentation with Multi-sequence Cardiac MR.- Cascaded Framework with Complementary CMR Information for Myocardial Pathology Segmentation.- CMRadjustNet: Recognition and standardization of cardiac MRI orientation via multi-tasking learning and deep neural networks.