Multiple Classifier Systems
Editat de Fabio Roli, Josef Kittler, Terry Windeatten Limba Engleză Paperback – iun 2004
Preț: 326.48 lei
Preț vechi: 408.10 lei
-20% Nou
Puncte Express: 490
Preț estimativ în valută:
57.78€ • 67.76$ • 50.66£
57.78€ • 67.76$ • 50.66£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540221449
ISBN-10: 3540221441
Pagini: 404
Ilustrații: XII, 392 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.61 kg
Ediția:2004
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540221441
Pagini: 404
Ilustrații: XII, 392 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.61 kg
Ediția:2004
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Invited Papers.- Classifier Ensembles for Changing Environments.- A Generic Sensor Fusion Problem: Classification and Function Estimation.- Bagging and Boosting.- AveBoost2: Boosting for Noisy Data.- Bagging Decision Multi-trees.- Learn++.MT: A New Approach to Incremental Learning.- Beyond Boosting: Recursive ECOC Learning Machines.- Exact Bagging with k-Nearest Neighbour Classifiers.- Combination Methods.- Yet Another Method for Combining Classifiers Outputs: A Maximum Entropy Approach.- Combining One-Class Classifiers to Classify Missing Data.- Combining Kernel Information for Support Vector Classification.- Combining Classifiers Using Dependency-Based Product Approximation with Bayes Error Rate.- Combining Dissimilarity-Based One-Class Classifiers.- A Modular System for the Classification of Time Series Data.- A Probabilistic Model Using Information Theoretic Measures for Cluster Ensembles.- Classifier Fusion Using Triangular Norms.- Dynamic Integration of Regression Models.- Dynamic Classifier Selection by Adaptive k-Nearest-Neighbourhood Rule.- Design Methods.- Spectral Measure for Multi-class Problems.- The Relationship between Classifier Factorisation and Performance in Stochastic Vector Quantisation.- A Method for Designing Cost-Sensitive ECOC.- Building Graph-Based Classifier Ensembles by Random Node Selection.- A Comparison of Ensemble Creation Techniques.- Multiple Classifiers System for Reducing Influences of Atypical Observations.- Sharing Training Patterns among Multiple Classifiers.- Performance Analysis.- First Experiments on Ensembles of Radial Basis Functions.- Random Aggregated and Bagged Ensembles of SVMs: An Empirical Bias–Variance Analysis.- Building Diverse Classifier Outputs to Evaluate the Behavior of Combination Methods: The Case of TwoClassifiers.- An Empirical Comparison of Hierarchical vs. Two-Level Approaches to Multiclass Problems.- Experiments on Ensembles with Missing and Noisy Data.- Applications.- Induced Decision Fusion in Automated Sign Language Interpretation: Using ICA to Isolate the Underlying Components of Sign.- Ensembles of Classifiers Derived from Multiple Prototypes and Their Application to Handwriting Recognition.- Network Intrusion Detection by a Multi-stage Classification System.- Application of Breiman’s Random Forest to Modeling Structure-Activity Relationships of Pharmaceutical Molecules.- Experimental Study on Multiple LDA Classifier Combination for High Dimensional Data Classification.- Physics-Based Decorrelation of Image Data for Decision Level Fusion in Face Verification.- High Security Fingerprint Verification by Perceptron-Based Fusion of Multiple Matchers.- Second Guessing a Commercial’Black Box’ Classifier by an’In House’ Classifier: Serial Classifier Combination in a Speech Recognition Application.