Multilevel Optimization: Algorithms and Applications: Nonconvex Optimization and Its Applications, cartea 20
Editat de A. Migdalas, Panos M. Pardalos, Peter Värbranden Limba Engleză Paperback – 17 sep 2011
Din seria Nonconvex Optimization and Its Applications
- 18%
Preț: 912.85 lei - 20%
Preț: 1225.75 lei -
Preț: 381.72 lei - 18%
Preț: 1174.75 lei - 18%
Preț: 911.94 lei - 18%
Preț: 1753.42 lei - 18%
Preț: 1177.32 lei - 18%
Preț: 918.17 lei - 18%
Preț: 1494.88 lei - 20%
Preț: 958.01 lei - 18%
Preț: 1179.90 lei - 18%
Preț: 3191.17 lei - 18%
Preț: 1170.20 lei - 20%
Preț: 956.89 lei - 18%
Preț: 919.21 lei - 20%
Preț: 961.50 lei - 15%
Preț: 621.48 lei - 18%
Preț: 1178.23 lei - 18%
Preț: 913.75 lei - 18%
Preț: 915.29 lei - 18%
Preț: 1174.75 lei - 18%
Preț: 1759.79 lei - 18%
Preț: 1286.35 lei - 18%
Preț: 914.52 lei - 15%
Preț: 677.28 lei - 18%
Preț: 1182.77 lei - 15%
Preț: 621.34 lei - 15%
Preț: 621.48 lei
Preț: 1174.75 lei
Preț vechi: 1432.62 lei
-18% Nou
Puncte Express: 1762
Preț estimativ în valută:
207.84€ • 244.35$ • 182.04£
207.84€ • 244.35$ • 182.04£
Carte tipărită la comandă
Livrare economică 28 ianuarie-11 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461379898
ISBN-10: 146137989X
Pagini: 412
Ilustrații: XXII, 386 p.
Dimensiuni: 160 x 240 x 22 mm
Greutate: 0.58 kg
Ediția:1998
Editura: Springer Us
Colecția Springer
Seria Nonconvex Optimization and Its Applications
Locul publicării:New York, NY, United States
ISBN-10: 146137989X
Pagini: 412
Ilustrații: XXII, 386 p.
Dimensiuni: 160 x 240 x 22 mm
Greutate: 0.58 kg
Ediția:1998
Editura: Springer Us
Colecția Springer
Seria Nonconvex Optimization and Its Applications
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Congested O-D Trip Demand Adjustment Problem: Bilevel Programming Formulation and Optimality Conditions.- 1 Introduction.- 2 Literature Review.- 3 Model Analysis.- 4 Necessary Optimality Conditions of the DAP.- 5 Conclusions.- 2 Determining Tax Credits for Converting Nonfood Crops to Biofuels: An Application of Bilevel Programming.- 1 Introduction.- 2 Mathematical Model.- 3 Description of Algorithms.- 4 Computational Results.- 5 Discussion.- 3 Multilevel Optimization Methods in Mechanics.- 1 Introduction.- 2 Presentation of the Multilevel Decomposition Methods.- 3 Large Cable Structures.- 4 Large Elastoplastic Structures.- 5 Validation and Improvements of Simplified Models.- 6 Extension to other Problems. Decomposition Algorithms for Nonconvex Minimization Problems.- 7 A Multilevel Method for the Approximation of a Nonconvex Minimum Problem by Convex ones.- 8 Multilevel Decomposition into two Convex Problems.- 9 Structures with Fractal Interfaces.- 4 Optimal Structural Design in Nonsmooth Mechanics.- 1 Introduction.- 2 Parametric Nonsmooth Structural Analysis Problems.- 3 Optimal Design Problems.- 4 Mathematical Analysis and Algorithms.- 5 Discussion.- References.- 5 Optimizing the Operations of an Aluminium Smelter Using Non-Linear Bi-Level Programming.- 1 Introduction.- 2 The Mathematical Model of the Aluminium Smelter.- 3 The Solution Algorithm.- 4 The Mathematical Model Representing the Multi-period Operations of the Aluminium Smelter.- 5 Concluding Remarks.- References.- 6 Complexity Issues in Bilevel Linear Programming.- 1 Introduction.- 2 Difficulty in Approximation.- 3 A Special Case Solvable in Polynomial Time.- 4 Regret Ratio in Decision Analysis.- 5 Future Directions.- References.- 7 The Computational Complexity of Multi-Level Bottleneck Programming Problems.- 1 Introduction.- 2 Problem Statement and Previous Complexity Results.- 3 Hardness Proof for Multi-Level Bottleneck Programs.- 4 Hardness Proof for Multi-Level Linear Programs.- 5 The Complexity of Bi-Level Programs.- 6 Discussion.- References.- 8 On the Linear Maxmin and Related Programming Problems.- 1 Introduction.- 2 Reformulations.- 3 Tools for Resolution.- 4 Solving the Linear Maxmin Problem.- 9 Piecewise Sequential Quadratic Programming for Mathematical Programs with Nonlinear Complementarity Constraints.- 1 Introduction.- 2 Application to Optimal Design of Mechanical Structures.- 3 The Piecewise Smooth Approach to NCP-MP.- 4 The PSQP Method for NCP-MPEC.- 5 Computational Testing of PSQP.- References.- 10 A New Branch and Bound Method for Bilevel Linear Programs.- 1 Introduction.- 2 The Equivalent Reverse Convex Program.- 3 Solution Method.- 4 Implementation Issues.- 5 Illustrative Example.- 11 A Penalty Method for Linear Bilevel Programming Problems.- 1 Introduction.- 2 Linear Bilevel Programming Problem.- 3 The Method.- 4 Globalization of the Solution.- 5 Numerical Examples.- 6 Concluding Remarks.- 12 An Implicit Function Approach to Bilevel Programming Problems.- 1 Introduction.- 2 Lipschitz Continuity of Optimal Solutions.- 3 Application of the Bundle Method.- 4 Non-uniquely Solvable Lower Level Problems.- 5 Nonconvex Lower Level Problems and Coupling Constraints in the Upper Level Problem.- 13 Bilevel Linear Programming, Multiobjective Programming, and Monotonic Reverse Convex Programming.- 1 Introduction.- 2 Optimization over the Efficient Set.- 3 Bilevel Linear Programming.- 4 Basic Properties of (FMRP).- 5 Different D.C. Approaches to (FMRP).- 14 Existence of Solutions to Generalized Bilevel Programming Problem.- 1 Introduction.- 2 Notations and Preliminaries.- 3 Parametric Implicit Variational Problem.- 4 Existence Results for Generalized Bilevel Problems.- 5 Final Remarks.- 15 Application of Topological Degree Theory to Complementarity Problems.- 1 Problem Specification and Topological Degree Theory.- 2 General Complementarity Problem.- 3 Sufficient Conditions for Solution Existence.- 4 Standard Complementarity Problem.- 5 Implicit Complementarity Problem.- 6 General Order Complementarity Problem.- References.- 16 Optimality and Duality in Parametric Convex Lexicographic Programming.- 1 Introduction.- 2 Orientation.- 3 Continuity.- 4 Global Optimality.- 5 Local Optimality.- 6 Duality.- 7 Bilevel Zermelo’s Problems.