Cantitate/Preț
Produs

Methods of Solving Number Theory Problems

Autor Ellina Grigorieva
en Limba Engleză Paperback – 5 ian 2019
Through its engaging and unusual problems, this book demonstrates methods of reasoning necessary for learning number theory. Every technique is followed by problems (as well as detailed hints and solutions) that apply theorems immediately, so readers can solve a variety of abstract problems in a systematic, creative manner. New solutions often require the ingenious use of earlier mathematical concepts - not the memorization of formulas and facts. Questions also often permit experimental numeric validation or visual interpretation to encourage the combined use of deductive and intuitive thinking. 

The first chapter starts with simple topics like even and odd numbers, divisibility, and prime numbers and helps the reader to solve quite complex, Olympiad-type problems right away.   It also covers properties of the perfect, amicable, and figurate numbers and introduces congruence.  The next chapter begins with the Euclidean algorithm, explores therepresentations of integer numbers in different bases, and examines continued fractions, quadratic irrationalities, and the Lagrange Theorem. The last section of Chapter Two is an exploration of different methods of proofs. The third chapter is dedicated to solving Diophantine linear and nonlinear equations and includes different methods of solving Fermat’s (Pell’s) equations. It also covers Fermat’s factorization techniques and methods of solving challenging problems involving exponent and factorials. Chapter Four reviews the Pythagorean triple and quadruple and emphasizes their connection with geometry, trigonometry, algebraic geometry, and stereographic projection.  A special case of Waring’s problem as a representation of a number by the sum of the squares or cubes of other numbers is covered, as well as quadratic residuals, Legendre and Jacobi symbols, and interesting word problems related to the properties of numbers. Appendices provide a historic overview of number theory and its main developments from the ancient cultures in Greece, Babylon, and Egypt to the modern day. 

Drawing from cases collected by an accomplished female mathematician, Methods in Solving Number Theory Problems is designed as a self-study guide or supplementary textbook for a one-semester course in introductory number theory. It can also be used to prepare for mathematical Olympiads. Elementary algebra, arithmetic and some calculus knowledge are the only prerequisites. Number theory gives precise proofs and theorems of an irreproachable rigor and sharpens analytical thinking, which makes this book perfect for anyone looking to build their mathematical confidence.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 38009 lei  6-8 săpt.
  Springer International Publishing – 5 ian 2019 38009 lei  6-8 săpt.
Hardback (1) 41785 lei  38-44 zile
  Springer International Publishing – 18 iul 2018 41785 lei  38-44 zile

Preț: 38009 lei

Nou

Puncte Express: 570

Preț estimativ în valută:
6726 7887$ 5907£

Carte tipărită la comandă

Livrare economică 09-23 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030081300
ISBN-10: 3030081303
Pagini: 391
Ilustrații: XXI, 391 p. 16 illus., 12 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 2018
Editura: Springer International Publishing
Colecția Birkhäuser
Locul publicării:Cham, Switzerland

Cuprins

Preface.- Numbers: Problems Involving Integers.- Further Study of Integers.- Diophantine Equations and More.- Pythagorean Triples, Additive Problems, and More.- Homework.

Notă biografică

Ellina Grigorieva, PhD, is Professor of Mathematics at Texas Women's University, Denton, TX, USA.

Textul de pe ultima copertă

Through its engaging and unusual problems, this book demonstrates methods of reasoning necessary for learning number theory. Every technique is followed by problems (as well as detailed hints and solutions) that apply theorems immediately, so readers can solve a variety of abstract problems in a systematic, creative manner. New solutions often require the ingenious use of earlier mathematical concepts - not the memorization of formulas and facts. Questions also often permit experimental numeric validation or visual interpretation to encourage the combined use of deductive and intuitive thinking. 
The first chapter of the book covers topics like even and odd numbers, divisibility, prime, perfect, figurate numbers, and introduces congruence.  The next chapter works with representations of natural numbers in different bases, as well as the theory of continued fractions, quadratic irrationalities, and also explores different methods of proofs. The third chapter is dedicated to solving unusual factorial and exponential equations, Diophantine equations, introduces Pell’s equations and how they connect algebra and geometry. Chapter 4 reviews Pythagorean triples and  their relation to algebraic geometry, representation of a number as the sum of squares or cubes of other numbers, quadratic residuals, and interesting word problems. Appendices provide a historic overview of number theory and its main developments from ancient cultures to the modern day. Drawing from cases collected by an accomplished female mathematician, Methods in Solving Number Theory Problems is designed as a self-study guide or supplementary textbook for a one-semester course in introductory number theory. It can also be used to prepare for mathematical Olympiads. Elementary algebra, arithmetic and some calculus knowledge are the only prerequisites. Number theory gives precise proofs and theorems of an irreproachable rigor and sharpens analytical thinking, which makes this book perfect for anyone looking to build their mathematical confidence.​

Caracteristici

Teaches number theory through problem solving, making it perfect for self-study and Olympiad preparation Contains over 260 challenging problems and 110 homework exercises in number theory with hints and detailed solutions Encourages the creative applications of methods, rather than memorization

Descriere

Descriere de la o altă ediție sau format:

Through its engaging and unusual problems, this book demonstrates methods of reasoning necessary for learning number theory. Every technique is followed by problems (as well as detailed hints and solutions) that apply theorems immediately, so readers can solve a variety of abstract problems in a systematic, creative manner. New solutions often require the ingenious use of earlier mathematical concepts - not the memorization of formulas and facts. Questions also often permit experimental numeric validation or visual interpretation to encourage the combined use of deductive and intuitive thinking. 

 
The first chapter starts with simple topics like even and odd numbers, divisibility, and prime numbers and helps the reader to solve quite complex, Olympiad-type problems right away.   It also covers properties of the perfect, amicable, and figurate numbers and introduces congruence.  The next chapter begins with the Euclidean algorithm, explores the representations of integer numbers in different bases, and examines continued fractions, quadratic irrationalities, and the Lagrange Theorem. The last section of Chapter Two is an exploration of different methods of proofs. The third chapter is dedicated to solving Diophantine linear and nonlinear equations and includes different methods of solving Fermat’s (Pell’s) equations. It also covers Fermat’s factorization techniques and methods of solving challenging problems involving exponent and factorials. Chapter Four reviews the Pythagorean triple and quadruple and emphasizes their connection with geometry, trigonometry, algebraic geometry, and stereographic projection.  A special case of Waring’s problem as a representation of a number by the sum of the squares or cubes of other numbers is covered, as well as quadratic residuals, Legendre and Jacobi symbols, and interesting word problems related to the properties of numbers. Appendices provide a historic overview of number theory and its main developments from the ancient cultures in Greece, Babylon, and Egypt to the modern day. 
 
Drawing from cases collected by an accomplished female mathematician, Methods in Solving Number Theory Problems is designed as a self-study guide or supplementary textbook for a one-semester course in introductory number theory. It can also be used to prepare for mathematical Olympiads. Elementary algebra, arithmetic and some calculus knowledge are the only prerequisites. Number theory gives precise proofs and theorems of an irreproachable rigor and sharpens analytical thinking, which makes this book perfect for anyone looking to build their mathematical confidence.