Maximum Likelihood for Social Science: Strategies for Analysis: Analytical Methods for Social Research
Autor Michael D. Ward, John S. Ahlquisten Limba Engleză Paperback – 14 noi 2018
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 283.16 lei 6-8 săpt. | |
| Cambridge University Press – 14 noi 2018 | 283.16 lei 6-8 săpt. | |
| Hardback (1) | 619.97 lei 6-8 săpt. | |
| Cambridge University Press – 21 noi 2018 | 619.97 lei 6-8 săpt. |
Preț: 283.16 lei
Puncte Express: 425
Preț estimativ în valută:
50.11€ • 58.57$ • 43.51£
50.11€ • 58.57$ • 43.51£
Carte tipărită la comandă
Livrare economică 20 februarie-06 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781316636824
ISBN-10: 1316636828
Pagini: 324
Ilustrații: 49 b/w illus. 43 tables
Dimensiuni: 152 x 227 x 18 mm
Greutate: 0.45 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Analytical Methods for Social Research
Locul publicării:New York, United States
ISBN-10: 1316636828
Pagini: 324
Ilustrații: 49 b/w illus. 43 tables
Dimensiuni: 152 x 227 x 18 mm
Greutate: 0.45 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Analytical Methods for Social Research
Locul publicării:New York, United States
Cuprins
Part I. Concepts, Theory, and Implementation: 1. Introduction to maximum likelihood; 2. Theory; 3. Maximum likelihood for binary outcomes; 4. Implementing MLE; Part II. Model Evaluation and Interpretation: 5. Model evaluation and selection; 6. Inference and interpretation; Part III. The Generalized Linear Model: 7. The generalized linear model; 8. Ordered categorical variable models 9. Models for nominal data; 10. Strategies for analyzing count data; Part IV. Advanced Topics: 10. Duration; 11. Strategies for missing data; Part V. A Look Ahead: 13. Epilogue; Index.
Recenzii
'… offer[s] an excellent text with the goal to introduce social scientists to the maximum likelihood principle in a practical way.' M. Oromaner, Choice
Notă biografică
Descriere
Practical, example-driven introduction to maximum likelihood for the social sciences. Emphasizes computation in R, model selection and interpretation.