Matrix and Tensor Decomposition: Application to Data Fusion and Analysis
Autor Christian Jutten, Dana Lahat, Tulay Adalien Limba Engleză Paperback – 31 ian 2024
- Introduces basic theory and practice of data fusion, along with the concept of "diversity" as a key concept for interpretability and identifiability of a given decomposition
- Provides a unifying framework for basic matrix and tensor decompositions, considering both algebraic and statistical points-of-view and discussing their relationships
- Addresses key questions in implementation, most importantly, that of model order selection and other parameters
- Provides tools for model order selection so that the signal subspace can be identified
Preț: 439.60 lei
Preț vechi: 549.51 lei
-20% Precomandă
Puncte Express: 659
Preț estimativ în valută:
77.79€ • 90.72$ • 68.30£
77.79€ • 90.72$ • 68.30£
Carte nepublicată încă
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128157602
ISBN-10: 0128157607
Pagini: 400
Dimensiuni: 191 x 235 mm
Editura: ELSEVIER SCIENCE
ISBN-10: 0128157607
Pagini: 400
Dimensiuni: 191 x 235 mm
Editura: ELSEVIER SCIENCE
Public țintă
Researchers and graduate students in electronic engineering computer scientists, medical imaging and applied mathematicsCuprins
1. Introduction 2. ICA and IVA: A Bottom-up Approach 3. ICA and IVA: A Top-down Approach 4. Sparse Decompositions 5. Nonnegative Decompositions 6. Tensor Decompositions 7. Data Fusion and Analysis Through 8. Data Fusion and Analysis Using General 9. Implementation Issues and Open