Cantitate/Preț
Produs

Loop Groups: Oxford Mathematical Monographs

Autor Andrew Pressley, Graeme Segal
en Limba Engleză Hardback – 18 dec 1986
Descriere de la o altă ediție sau format:
Loop groups are the simplest class of infinite dimensional Lie groups, and have important applications in elementary particle physics. They have recently been studied intensively, and the theory is now well developed, involving ideas from several areas of mathematics - algebra, geometry, analysis, and combinatorics. The mathematics of quantum field theory is an important ingredient. This book gives a complete and self-contained account of what is known about the subject and it is written from a geometrical and analytical point of view, with quantum field theory very much in mind. The mathematics used in connection with loop groups is interesting and important beyond its immediate applications and the authors have tried to make the book accessible to mathematicians in many fields.The hardback edition was published in December 1986.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 54377 lei  43-49 zile
  OUP OXFORD – 9 iun 1988 54377 lei  43-49 zile
Hardback (1) 34651 lei  43-49 zile
  Clarendon Press – 18 dec 1986 34651 lei  43-49 zile

Din seria Oxford Mathematical Monographs

Preț: 34651 lei

Preț vechi: 46274 lei
-25% Nou

Puncte Express: 520

Preț estimativ în valută:
6131 7207$ 5369£

Carte tipărită la comandă

Livrare economică 29 ianuarie-04 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780198535355
ISBN-10: 019853535X
Pagini: 326
Ilustrații: figures
Dimensiuni: 164 x 240 x 24 mm
Greutate: 0.6 kg
Editura: Clarendon Press
Colecția Clarendon Press
Seria Oxford Mathematical Monographs

Locul publicării:Oxford, United Kingdom

Recenzii

'This is an outstanding book, of enormous interest to anyone interested in Lie groups, Lie algebras and/or Quantum Field Theory' Mathematika

Cuprins

Introduction; PART 1 - Finite dimensional lie groups; Groups of smooth maps; Central extensions; The root system: KAC-Moody algebras; Loop groups as groups of operators in Hilbert space; The Grassmannian of Hilbert space and the determinant line bundle; The fundamental homogeneous space. PART 2 - Representation theory; The fundamental representation; The Borel-Weil theory; The spin representation; 'Blips' or 'vertex operators'; The KAC character formula and the Bernstein-Gelfand-Gelfand resolution; References; Index of notation; Index.