Linear Operators in Hilbert Spaces: Graduate Texts in Mathematics, cartea 68
Autor Joachim Weidmann Traducere de Joseph Szücsen Limba Engleză Paperback – 13 iun 2012
Din seria Graduate Texts in Mathematics
- 13%
Preț: 388.31 lei -
Preț: 397.09 lei - 17%
Preț: 396.78 lei -
Preț: 433.17 lei -
Preț: 391.33 lei - 15%
Preț: 485.89 lei -
Preț: 260.98 lei - 15%
Preț: 466.31 lei -
Preț: 425.27 lei -
Preț: 417.32 lei -
Preț: 383.79 lei - 17%
Preț: 431.72 lei -
Preț: 374.76 lei -
Preț: 439.55 lei - 15%
Preț: 585.17 lei - 15%
Preț: 573.07 lei -
Preț: 434.18 lei -
Preț: 484.64 lei -
Preț: 437.67 lei -
Preț: 313.64 lei - 17%
Preț: 395.83 lei - 15%
Preț: 464.09 lei - 15%
Preț: 469.94 lei -
Preț: 370.26 lei - 15%
Preț: 488.98 lei - 15%
Preț: 578.90 lei - 15%
Preț: 389.42 lei - 15%
Preț: 387.79 lei - 15%
Preț: 534.41 lei - 19%
Preț: 478.29 lei -
Preț: 432.53 lei -
Preț: 479.83 lei - 18%
Preț: 616.48 lei - 15%
Preț: 525.56 lei - 15%
Preț: 383.47 lei -
Preț: 363.82 lei - 15%
Preț: 394.36 lei - 15%
Preț: 392.05 lei - 15%
Preț: 393.01 lei - 15%
Preț: 394.35 lei - 15%
Preț: 393.06 lei - 15%
Preț: 628.10 lei - 15%
Preț: 393.56 lei - 15%
Preț: 430.05 lei - 15%
Preț: 535.56 lei - 15%
Preț: 398.85 lei - 17%
Preț: 396.67 lei -
Preț: 384.23 lei
Preț: 513.01 lei
Preț vechi: 603.54 lei
-15% Nou
Puncte Express: 770
Preț estimativ în valută:
90.79€ • 106.48$ • 79.61£
90.79€ • 106.48$ • 79.61£
Carte tipărită la comandă
Livrare economică 24 ianuarie-07 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461260295
ISBN-10: 1461260299
Pagini: 420
Ilustrații: XIII, 402 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.59 kg
Ediția:Softcover reprint of the original 1st ed. 1980
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461260299
Pagini: 420
Ilustrații: XIII, 402 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.59 kg
Ediția:Softcover reprint of the original 1st ed. 1980
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Vector spaces with a scalar product, pre-Hilbert spaces.- 1.1 Sesquilinear forms.- 1.2 Scalar products and norms.- 2 Hilbert spaces.- 2.1 Convergence and completeness.- 2.2 Topological notions.- 3 Orthogonality.- 3.1 The projection theorem.- 3.2 Orthonormal systems and orthonormal bases.- 3.3 Existence of orthonormal bases, dimension of a Hilbert space.- 3.4 Tensor products of Hilbert spaces.- 4 Linear operators and their adjoints.- 4.1 Basic notions.- 4.2 Bounded linear operators and functionals.- 4.3 Isomorphisms, completion.- 4.4 Adjoint operator.- 4.5 The theorem of Banach-Steinhaus, strong and weak convergence.- 4.6 Orthogonal projections, isometric and unitary operators.- 5 Closed linear operators.- 5.1 Closed and closable operators, the closed graph theorem.- 5.2 The fundamentals of spectral theory.- 5.3 Symmetric and self-adjoint operators.- 5.4 Self-adjoint extensions of symmetric operators.- 5.5 Operators defined by sesquilinear forms (Friedrichs’ extension).- 5.6 Normal operators.- 6 Special classes of linear operators.- 6.1 Finite rank and compact operators.- 6.2 Hilbert-Schmidt operators and Carleman operators.- 6.3 Matrix operators and integral operators.- 6.4 Differential operators on L2(a, b) with constant coefficients.- 7 The spectral theory of self-adjoint and normal operators.- 7.1 The spectral theorem for compact operators, the spaces Bp (H1H2).- 7.2 Integration with respect to a spectral family.- 7.3 The spectral theorem for self-adjoint operators.- 7.4 Spectra of self-adjoint operators.- 7.5 The spectral theorem for normal operators.- 7.6 One-parameter unitary groups.- 8 Self-adjoint extensions of symmetric operators.- 8.1 Defect indices and Cayley transforms.- 8.2 Construction of self-adjoint extensions.- 8.3 Spectra of self-adjoint extensionsof a symmetric operator.- 8.4 Second order ordinary differential operators.- 8.5 Analytic vectors and tensor products of self-adjoint operators.- 9 Perturbation theory for self-adjoint operators.- 9.1 Relatively bounded perturbations.- 9.2 Relatively compact perturbations and the essential spectrum.- 9.3 Strong resolvent convergence.- 10 Differential operators on L2(?m).- 10.1 The Fourier transformation on L2(?m).- 10.2 Sobolev spaces and differential operators on L2(?m) with constant coefficients.- 10.3 Relatively bounded and relatively compact perturbations.- 10.4 Essentially self-adjoint Schrödinger operators.- 10.5 Spectra of Schrödinger operators.- 10.6 Dirac operators.- 11 Scattering theory.- 11.1 Wave operators.- 11.2 The existence and completeness of wave operators.- 11.3 Applications to differential operators on L2(?m).- A.1 Definition of the integral.- A.2 Limit theorems.- A.3 Measurable functions and sets.- A.4 The Fubini-Tonelli theorem.- A.5 The Radon-Nikodym theorem.- References.- Index of symbols.- Author and subject index.