Lexical Semantics and Knowledge Representation in Multilingual Text Generation
Autor Manfred Stedeen Limba Engleză Hardback – 31 ian 1999
Lexical Semantics and Knowledge Representation in Multilingual Text Generation develops the means for systematically deriving a set of paraphrases from the same underlying representation with the emphasis on events and verb meaning. Furthermore, the same mapping mechanism is used to achieve multilingual generation: English and German output are produced in parallel, on the basis of an adequate division between language-neutral and language-specific (lexical and grammatical) knowledge.
Lexical Semantics and Knowledge Representation in Multilingual Text Generation provides detailed insights into designing the representations and organizing the generation process. Readers with a background in artificial intelligence, cognitive science, knowledge representation, linguistics, or natural language processing will find a model of language production that can be adapted to a variety of purposes.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 945.95 lei 6-8 săpt. | |
| Springer Us – 23 oct 2012 | 945.95 lei 6-8 săpt. | |
| Hardback (1) | 952.58 lei 6-8 săpt. | |
| Springer – 31 ian 1999 | 952.58 lei 6-8 săpt. |
Preț: 952.58 lei
Preț vechi: 1190.73 lei
-20%
Puncte Express: 1429
Preț estimativ în valută:
168.58€ • 197.02$ • 146.36£
168.58€ • 197.02$ • 146.36£
Carte tipărită la comandă
Livrare economică 20 februarie-06 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792384199
ISBN-10: 0792384199
Pagini: 240
Ilustrații: XV, 219 p.
Dimensiuni: 160 x 241 x 18 mm
Greutate: 0.53 kg
Ediția:1999
Editura: Springer
Locul publicării:New York, NY, United States
ISBN-10: 0792384199
Pagini: 240
Ilustrații: XV, 219 p.
Dimensiuni: 160 x 241 x 18 mm
Greutate: 0.53 kg
Ediția:1999
Editura: Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Introduction.- 1.1 Natural language generation.- 1.2 Goals of this research.- 1.3 Overview of the book.- 2. Lexicalization in NLG.- 2.1 Introduction.- 2.2 The nature of lexical items in NLP.- 2.3 Linking concepts to lexical items.- 2.4 Criteria for lexical choice.- 2.5 Placing lexicalization in the generation process.- 2.6 Conclusions: making progress on lexicalization.- 3. Classifying Lexical Variation.- 3.1 Intra-lingual paraphrases.- 3.2 Inter-lingual divergences.- 3.3 Divergences as paraphrases.- 4. Modelling the Domain.- 4.1 Building domain models for NLG.- 4.2 Knowledge representation in LOOM.- 4.3 Ontological categories.- 4.4 The domain model.- 5. Levels of Representation: Sitspec and Semspec.- 5.1 Finding appropriate representation levels in NLG.- 5.2 Linguistic ontology: adapting the ‘Upper Model’.- 5.3 SitSpecs.- 5.4 SemSpecs.- 6. Representing the Meaning of Words.- 6.1 Introduction: Lexical semantics.- 6.2 Denotation and covering.- 6.3 Partial SemSpecs.- 6.4 Connotation.- 6.5 Salience.- 7. Verb Alternations and Extensions.- 7.1 Background: verb alternations.- 7.2 Alternations as meaning extensions.- 7.3 Lexical rules for alternations and extensions.- 7.4 Extension rules for circumstances.- 7.5 Examples: lexical entries for verbs.- 7.6 Summary.- 8. A System Architecture for Multilingual Generation.- 8.1 Lexicalization with constraints and preferences.- 8.2 The computational problem.- 8.3 Architecture and algorithm.- 8.4 Implementation: MOOSE.- 8.5 Summary: lexicalization qua subsumption.- 9. Generating Paraphrases.- 9.1 Verbalizing states.- 9.2 Verbalizing activities.- 9.3 Verbalizing events.- 9.4 Solutions to legalization problems.- 10. From Sentences to Text.- 10.1 Text representation.- 10.2 Embedding MOOSE in a text generator.- 10.3 Example:technical documentation.- 11. Summary and Conclusions.- 11.1 Summary of the work.- 11.2 Comparison to related work.- 11.3 Directions for future research.- References.
Recenzii
`I recommend the book not only to researchers interested in text generation and in machine translation, but to everybody interested in the relationship between language-independent knowledge representation and language-specific ontologies... Stede's specific proposal is well defined and effective.'
Computational Linguistics, 26:2
Computational Linguistics, 26:2