Lectures in Abstract Algebra: III. Theory of Fields and Galois Theory: Graduate Texts in Mathematics, cartea 32
Autor N. Jacobsonen Limba Engleză Paperback – 1964
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (2) | 507.19 lei 43-57 zile | |
| Springer – 15 ian 2013 | 507.19 lei 43-57 zile | |
| Springer – 1964 | 509.25 lei 43-57 zile |
Din seria Graduate Texts in Mathematics
- 13%
Preț: 388.00 lei -
Preț: 380.44 lei - 15%
Preț: 466.31 lei -
Preț: 481.70 lei - 15%
Preț: 533.99 lei - 15%
Preț: 383.17 lei - 15%
Preț: 394.06 lei - 15%
Preț: 391.74 lei - 15%
Preț: 392.71 lei - 15%
Preț: 394.04 lei - 15%
Preț: 392.75 lei - 15%
Preț: 393.25 lei - 17%
Preț: 396.35 lei - 15%
Preț: 571.96 lei - 15%
Preț: 388.38 lei -
Preț: 432.82 lei - 15%
Preț: 569.62 lei - 15%
Preț: 569.57 lei -
Preț: 416.98 lei - 15%
Preț: 576.36 lei -
Preț: 445.45 lei -
Preț: 542.93 lei -
Preț: 423.96 lei -
Preț: 391.02 lei - 15%
Preț: 485.89 lei -
Preț: 260.78 lei - 19%
Preț: 481.23 lei - 15%
Preț: 559.25 lei -
Preț: 381.34 lei - 15%
Preț: 424.86 lei - 15%
Preț: 514.23 lei - 15%
Preț: 541.61 lei -
Preț: 477.42 lei -
Preț: 418.37 lei -
Preț: 374.48 lei -
Preț: 443.69 lei - 15%
Preț: 460.83 lei -
Preț: 481.34 lei - 15%
Preț: 563.78 lei -
Preț: 434.38 lei - 15%
Preț: 576.84 lei
Preț: 509.25 lei
Preț vechi: 599.11 lei
-15%
Puncte Express: 764
Preț estimativ în valută:
90.14€ • 104.71$ • 78.10£
90.14€ • 104.71$ • 78.10£
Carte tipărită la comandă
Livrare economică 02-16 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387901244
ISBN-10: 0387901248
Pagini: 324
Ilustrații: XII, 324 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:Softcover reprint of the original 1st ed. 1964
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387901248
Pagini: 324
Ilustrații: XII, 324 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:Softcover reprint of the original 1st ed. 1964
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Extension of homomorphisms.- 2. Algebras.- 3. Tensor products of vector spaces.- 4. Tensor product of algebras.- I: Finite Dimensional Extension Fields.- 1. Some vector spaces associated with mappings of fields.- 2. The Jacobson-Bourbaki correspondence.- 3. Dedekind independence theorem for isomorphisms of a field.- 4. Finite groups of automorphisms.- 5. Splitting field of a polynomial.- 6. Multiple roots. Separable polynomials.- 7. The “fundamental theorem” of Galois theory.- 8. Normal extensions. Normal closures.- 9. Structure of algebraic extensions. Separability.- 10. Degrees of separability and inseparability. Structure of normal extensions.- 11. Primitive elements.- 12. Normal bases.- 13 Finite fields.- 14. Regular representation, trace and norm.- 15. Galois cohomology.- 16 Composites of fields.- II: Galois Theory of Equations.- 1. The Galois group of an equation.- 2. Pure equations.- 3. Galois’ criterion for solvability by radicals.- 4. The general equation of n-th degree.- 5. Equations with rational coefficients and symmetric group as Galois group.- III: Abelian Extensions.- 1. Cyclotomic fields over the rationals.- 2. Characters of finite commutative groups.- 3. Kummer extensions.- 4. Witt vectors.- 5. Abelian p-extensions.- IV: Structure Theory of Fields.- 1. Algebraically closed fields.- 2. Infinite Galois theory.- 3. Transcendency basis.- 4. Lüroth’s theorem.- 5. Linear disjointness and separating transcendency bases.- 6. Derivations.- 7. Derivations, separability and p-independence.- 8. Galois theory for purely inseparable extensions of exponent one.- 9. Higher derivations.- 10. Tensor products of fields.- 11. Free composites of fields.- V: Valuation Theory.- 1. Real valuations.- 2. Real valuations of the field of rational numbers.- 3. Real valuations of ?(x) which are trivial in ?.- 4. Completion of a field.- 5. Some properties of the field of p-adic numbers.- 6. Hensel’s lemma.- 7. Construction of complete fields with given residue fields.- 8. Ordered groups and valuations.- 9. Valuations, valuation rings, and places.- 10. Characterization of real non-archimedean valuations.- 11. Extension of homomorphisms and valuations.- 12. Application of the extension theorem: Hilbert Nullstellensatz.- 13. Application of the extension theorem: integral closure.- 14. Finite dimensional extensions of complete fields.- 15. Extension of real valuations to finite dimensional extension fields.- 16. Ramification index and residue degree.- VI: Artin-Schreier Theory.- 1. Ordered fields and formally real fields.- 2. Real closed fields.- 3. Sturm’s theorem.- 4. Real closure of an ordered field.- 5. Real algebraic numbers.- 6. Positive definite rational functions.- 7. Formalization of Sturm’s theorem. Resultants.- 8. Decision method for an algebraic curve.- 9. Equations with parameters.- 10. Generalized Sturm’s theorem. Applications.- 11. Artin-Schreier characterization of real closed fields.- Suggestions for further reading.