Learning Classifier Systems
Editat de Tim Kovacs, Xavier Llorà, Keiki Takadama, Pier Luca Lanzi, Wolfgang Stolzmann, Stewart W. Wilsonen Limba Engleză Paperback – 19 mar 2007
Preț: 324.45 lei
Preț vechi: 405.57 lei
-20% Nou
Puncte Express: 487
Preț estimativ în valută:
57.40€ • 67.49$ • 50.28£
57.40€ • 67.49$ • 50.28£
Carte tipărită la comandă
Livrare economică 28 ianuarie-11 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540712305
ISBN-10: 3540712305
Pagini: 364
Ilustrații: XII, 345 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.55 kg
Ediția:2007
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540712305
Pagini: 364
Ilustrații: XII, 345 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.55 kg
Ediția:2007
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Knowledge Representation.- Analyzing Parameter Sensitivity and Classifier Representations for Real-Valued XCS.- Use of Learning Classifier System for Inferring Natural Language Grammar.- Backpropagation in Accuracy-Based Neural Learning Classifier Systems.- Binary Rule Encoding Schemes: A Study Using the Compact Classifier System.- Mechanisms.- Bloat Control and Generalization Pressure Using the Minimum Description Length Principle for a Pittsburgh Approach Learning Classifier System.- Post-processing Clustering to Decrease Variability in XCS Induced Rulesets.- LCSE: Learning Classifier System Ensemble for Incremental Medical Instances.- Effect of Pure Error-Based Fitness in XCS.- A Fuzzy System to Control Exploration Rate in XCS.- Counter Example for Q-Bucket-Brigade Under Prediction Problem.- An Experimental Comparison Between ATNoSFERES and ACS.- The Class Imbalance Problem in UCS Classifier System: A Preliminary Study.- Three Methods for Covering Missing Input Data in XCS.- New Directions.- A Hyper-Heuristic Framework with XCS: Learning to Create Novel Problem-Solving Algorithms Constructed from Simpler Algorithmic Ingredients.- Adaptive Value Function Approximations in Classifier Systems.- Three Architectures for Continuous Action.- A Formal Relationship Between Ant Colony Optimizers and Classifier Systems.- Detection of Sentinel Predictor-Class Associations with XCS: A Sensitivity Analysis.- Application-Oriented Research and Tools.- Data Mining in Learning Classifier Systems: Comparing XCS with GAssist.- Improving the Performance of a Pittsburgh Learning Classifier System Using a Default Rule.- Using XCS to Describe Continuous-Valued Problem Spaces.- The EpiXCS Workbench: A Tool for Experimentation and Visualization.