Introduction and Applications of Machine Learning in Geotechnics
Autor Zong Woo Geem, Gebrail Bekdas, Sinan Melih Nigdeli, Yaren Aydin, Ümit Isikdag, Tae-Hyung Kimen Limba Engleză Paperback – aug 2026
- Explores the most recent trends in generating novel applications for machine learning in geotechnics
- Explains how AI algorithms improve predictive accuracy and allow for precise analysis of soil behavior, landslide risks, and other geotechnical phenomena
- Details how machine learning techniques handle large datasets and lead to more accurate interpretations
Preț: 777.80 lei
Preț vechi: 854.72 lei
-9% Precomandă
Puncte Express: 1167
Preț estimativ în valută:
137.64€ • 160.51$ • 120.85£
137.64€ • 160.51$ • 120.85£
Carte nepublicată încă
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780443414817
ISBN-10: 0443414815
Pagini: 300
Dimensiuni: 152 x 229 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0443414815
Pagini: 300
Dimensiuni: 152 x 229 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
Cuprins
1. A review of machine learning (ML) methods for geotechnical engineering
2. Regression models for shear wave velocity prediction
3. Optimization based approaches to predict optimal dimensions of RC retaining walls
4. Gravelly soil identification based on the optimized ML models
5. Prediction of the Stress-strain responses by simple shear tests
6. Predicting the liquefaction from seismic events
7. Estimation of uniaxial compressive strength of soil
8. Prediction of vertical effective stress (σ'v) and specific penetration resistance (ps)
9. Slope stability prediction using ML models
2. Regression models for shear wave velocity prediction
3. Optimization based approaches to predict optimal dimensions of RC retaining walls
4. Gravelly soil identification based on the optimized ML models
5. Prediction of the Stress-strain responses by simple shear tests
6. Predicting the liquefaction from seismic events
7. Estimation of uniaxial compressive strength of soil
8. Prediction of vertical effective stress (σ'v) and specific penetration resistance (ps)
9. Slope stability prediction using ML models