Infinite-Horizon Optimal Control in the Discrete-Time Framework
Autor Joël Blot, Naïla Hayeken Limba Engleză Paperback – 9 noi 2013
Preț: 365.32 lei
Nou
Puncte Express: 548
Preț estimativ în valută:
64.64€ • 75.30$ • 56.44£
64.64€ • 75.30$ • 56.44£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461490371
ISBN-10: 1461490375
Pagini: 136
Ilustrații: VII, 126 p.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.22 kg
Ediția:2014
Editura: Springer
Locul publicării:New York, NY, United States
ISBN-10: 1461490375
Pagini: 136
Ilustrații: VII, 126 p.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.22 kg
Ediția:2014
Editura: Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Presentation of the problems and tools of the finite horizon.- 2. Infinite horizon theorems.- 3. The special case of the bounded processes.- Related topics. Appendix A : Sequences.- Appendix B: Static optimization.- References.
Recenzii
From the reviews:
“This book essentially ‘examines the Pontryagin principle using a Karush-Kuhn-Tucker theorem in ordered Banach spaces’ for finite-horizon setting based on the results of Boltyanski and Michel results. … is aimed at researchers and doctoral students in a variety of disciplines such as pure and applied mathematics, economics, management, engineering … . This volume is a welcome addition to the classic book … .” (D. Subbaram Naidu, Amazon.com, April, 2014)
“This book essentially ‘examines the Pontryagin principle using a Karush-Kuhn-Tucker theorem in ordered Banach spaces’ for finite-horizon setting based on the results of Boltyanski and Michel results. … is aimed at researchers and doctoral students in a variety of disciplines such as pure and applied mathematics, economics, management, engineering … . This volume is a welcome addition to the classic book … .” (D. Subbaram Naidu, Amazon.com, April, 2014)
Caracteristici
Examines the Pontryagin principle using a Karush-Kuhn-Tucker theorem in ordered Banach spaces Includes findings on the finite-horizon setting based on the Boltyanski and Michel results Uses various tools of nonlinear functional analysis to analyze the first Pontryagin principle? ? Includes supplementary material: sn.pub/extras