Cantitate/Preț
Produs

Humanities Data in R: Quantitative Methods in the Humanities and Social Sciences

Autor Taylor Arnold, Lauren Tilton
en Limba Engleză Paperback – 24 iul 2025
This book teaches readers to integrate data analysis techniques into humanities research practices using the R programming language. Methods for general-purpose visualization and analysis are introduced first, followed by domain-specific techniques for working with networks, text, geospatial data, temporal data, and images. The book is designed to be a bridge between quantitative and qualitative methods, individual and collaborative work, and the humanities and social sciences. The second edition of the text is a significant revision, with almost every aspect of the text rewritten in some way. The most notable difference is the incorporation of new R packages such as ggplot2 and dplyr that center broad data-science concepts.
This 2nd edition of Humanities Data with R does not presuppose background programming experience. Early chapters take readers from R set-up to exploratory data analysis, with one chapter dedicated to each stage of the data-science pipeline (data collection, visualization, manipulation, and relational joins). Following this, text analysis, networks, temporal data, geospatial data, and image analysis each have a dedicated chapter. These are grounded in examples to move readers beyond the intimidation of adding new tools to their research. The final section of the book extends the core material with additional computer science techniques for processing large datasets.
Everything is hands-on: image analysis is explained using digitized photographs from the 1930s, and networks are applied to page links on Wikipedia. After working through these examples with the provided data, code and book website, readers are prepared to apply new methods to their own work. The open source R programming language, with its myriad packages and popularity within the sciences and social sciences, is particularly well-suited to working with humanities data. R packages are also highlighted in an appendix.
The methodology will have wide application in classrooms and self-study for the humanities, but also for use in linguistics, anthropology, and political science. Outside the classroom, this intersection of humanities and computing is particularly relevant for research and new modes of dissemination across archives, museums and libraries.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 46545 lei  6-8 săpt.
  Springer International Publishing – 23 aug 2016 46545 lei  6-8 săpt.
Hardback (1) 56757 lei  6-8 săpt.
  Springer International Publishing – 28 aug 2024 56757 lei  6-8 săpt.

Din seria Quantitative Methods in the Humanities and Social Sciences

Preț: 39110 lei

Preț vechi: 46012 lei
-15% Nou

Puncte Express: 587

Preț estimativ în valută:
6923 8061$ 6046£

Carte indisponibilă temporar

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031625688
ISBN-10: 3031625684
Pagini: 284
Ilustrații: XIV, 284 p. 80 illus., 50 illus. in color.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.46 kg
Ediția:Second Edition 2024
Editura: Springer Verlag GmbH
Seria Quantitative Methods in the Humanities and Social Sciences


Cuprins

- Part I Core.- Working with Data in R.- EDA I: Grammar of Graphics.- EDA II: Organizing Data.- EDA III: Restructuring Data.- Collecting Data.- Part II Data Types.- Textual Data.- Network Data.- Temporal Data.- Spatial Data.- Image Data.- Part III Additional Methods.- Programming in R.- Data Formats.

Recenzii

Arnold and Tilton are a brilliant team, and this highly accessible book will appeal to a wide range of digital humanists. The text analysis chapters are very good, and the authors' work to develop an R package for interacting with the Stanford CoreNLP java Library fills a huge hole in the R text processing landscape.
Matthew L. Jockers, University of Nebraska-Lincoln; author of Text Analysis with R for Students of Literature (Springer, 2014)
This is the first book that covers analysis of all main parts of humanities data: texts, images, geospatial data, and networks. Now digital humanities finally has its perfect textbook. This is the book many of us were awaiting for years. It teaches you R (the most widely used open source data analysis platform today worldwide) using many examples. The writing is very clear, and information is organized in a logical and easy to follow manner. Whether you are just considering working with humanities data or already have experience, this is the must read book.
Lev Manovich, The Graduate Center, City University of New York; author of The Language of New Media (MIT, 2001)
This book gives a concise yet broadly accessible introduction to R, through the lens of exploratory data analysis, coupled with well-planned forays into key humanities data types and their analysis -- including a nice primer on network analysis.
Eric D. Kolaczyk, Boston University; author of Statistical Analysis of Network Data with R (Springer, 2014)

Notă biografică

Taylor Arnold is Professor of Data Science & Statistics at the University of Richmond and affiliated faculty in the interdisciplinary programs in linguistics and cognitive science. His research applies and develops corpus-based techniques and software to study how messages are communicated through visual and multimodal forms. Arnold is the co-author of four books: Humanities Data in R: Exploring Networks, Geospatial Data, Images and Texts (Springer, 2015), A Computational Approach to Statistical Learning (CRC Press, 2019), Layered Lives (Stanford University Press, 2022), and Distant Viewing: Analyzing Visual Culture at Scale (MIT Press, 2023).
Lauren Tilton is the E. Claiborne Robins Professor of Liberal Arts and Digital Humanities in the Department of Rhetoric and Communication Studies at the University of Richmond. Her research focuses on 20th and 21st century U.S. visual culture. She is director of Photogrammar, a digital public humanities project mapping New Deal and World War II documentary expression funded by the ACLS and NEH, and author of Humanities Data in R: Exploring Networks, Geospatial Data, Images and Texts (Springer, 2015), Layered Lives (Stanford University Press, 2022), and Distant Viewing: Analyzing Visual Culture at Scale (MIT Press, 2023). Her scholarship has appeared in journals such as American QuarterlyArchive JournalDigital Humanities Quarterly, and Digital Scholarship in the Humanities. She is the co-editor of Computational Humanities (Debates in the Digital Humanities), currently in production with the University of Minnesota Press.

Textul de pe ultima copertă

This book teaches readers to integrate data analysis techniques into humanities research practices using the R programming language. Methods for general-purpose visualization and analysis are introduced first, followed by domain-specific techniques for working with networks, text, geospatial data, temporal data, and images. The book is designed to be a bridge between quantitative and qualitative methods, individual and collaborative work, and the humanities and social sciences. The second edition of the text is a significant revision, with almost every aspect of the text rewritten in some way. The most notable difference is the incorporation of new R packages such as ggplot2 and dplyr that center broad data-science concepts.
This 2nd edition of Humanities Data with R does not presuppose background programming experience. Early chapters take readers from R set-up to exploratory data analysis, with one chapter dedicated to each stage of the data-science pipeline (data collection, visualization, manipulation, and relational joins). Following this, text analysis, networks, temporal data, geospatial data, and image analysis each have a dedicated chapter. These are grounded in examples to move readers beyond the intimidation of adding new tools to their research. The final section of the book extends the core material with additional computer science techniques for processing large datasets.
Everything is hands-on: image analysis is explained using digitized photographs from the 1930s, and networks are applied to page links on Wikipedia. After working through these examples with the provided data, code and book website, readers are prepared to apply new methods to their own work. The open source R programming language, with its myriad packages and popularity within the sciences and social sciences, is particularly well-suited to working with humanities data. R packages are also highlighted in an appendix.
The methodology will have wide application in classrooms and self-study for the humanities, but also for use in linguistics, anthropology, and political science. Outside the classroom, this intersection of humanities and computing is particularly relevant for research and new modes of dissemination across archives, museums and libraries.

Caracteristici

Provides a user-friendly beginners guide to the key concepts in the digital humanities by focusing on four major types of humanities data structures: networks, text corpora, geospatial data, and images Assumes no prior programming experience Suitable for a one-semester course at the university level for undergraduate, graduate and professional students, or as half or full-day tutorial or seminar