Homogeneous Ordered Graphs, Metrically Homogeneous Graphs, and Beyond
Autor Gregory Cherlinen Limba Engleză Hardback – 7 iul 2022
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Hardback (1) | 709.91 lei 6-8 săpt. | |
| Cambridge University Press – 7 iul 2022 | 709.91 lei 6-8 săpt. | |
| Hardback (1) | 793.18 lei 6-8 săpt. | |
| Cambridge University Press – 7 iul 2022 | 793.18 lei 6-8 săpt. |
Preț: 793.18 lei
Preț vechi: 922.31 lei
-14%
Puncte Express: 1190
Preț estimativ în valută:
140.47€ • 164.05$ • 122.02£
140.47€ • 164.05$ • 122.02£
Carte tipărită la comandă
Livrare economică 21 februarie-07 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781009229692
ISBN-10: 1009229699
Pagini: 386
Dimensiuni: 150 x 230 x 26 mm
Greutate: 0.61 kg
Ediția:Nouă
Editura: Cambridge University Press
Locul publicării:Cambridge, United Kingdom
ISBN-10: 1009229699
Pagini: 386
Dimensiuni: 150 x 230 x 26 mm
Greutate: 0.61 kg
Ediția:Nouă
Editura: Cambridge University Press
Locul publicării:Cambridge, United Kingdom
Cuprins
1. Results; 2. Methods; Part I. Homogeneous Ordered Graphs: 3. The catalog of homogeneous ordered graphs; 4. The generically ordered local order; 5. Ordered homogeneous graphs: Plan of the proof, Propositions I–IX; 6. Ordered homogeneous graphs: Proposition I; 7. Ordered homogeneous graphs: Proposition II; 8. Ordered homogeneous graphs: Proposition III; 9. Ordered homogeneous graphs: Proposition IV; 10. Ordered homogeneous graphs: Proposition V; Part II. Metrically Homogeneous Graphs: 11. Metrically homogeneous graphs: preliminaries; 12. Admissibility allows amalgamation; 13. Triangle constraints and 4-triviality; 14. Amalgamation requires admissibility; 15. Local analysis; 16. The bipartite case; 17. Infinite diameter; Appendix A. Some recent advances; References for Volume I; Index.
Descriere
First of two volumes presenting the state of the art in the classification of binary homogeneous structures and related problems.
Notă biografică
Gregory Cherlin is Distinguished Professor Emeritus at Rutgers University. He has worked on applications of model theory to algebra and combinatorics for half a century, and has published four books and over 100 articles on model theory and its applications.