Gravitational N-Body Problem: Proceedings of the Iau Colloquium No. 10 Held in Cambridge, England August 12–15, 1970: Astrophysics and Space Science Library, cartea 31
Editat de M. Lecaren Limba Engleză Paperback – 14 oct 2011
Din seria Astrophysics and Space Science Library
- 15%
Preț: 622.91 lei - 18%
Preț: 945.61 lei - 18%
Preț: 759.68 lei - 18%
Preț: 862.40 lei - 18%
Preț: 1062.06 lei - 18%
Preț: 923.08 lei -
Preț: 387.27 lei - 15%
Preț: 639.26 lei -
Preț: 383.03 lei - 18%
Preț: 917.70 lei -
Preț: 395.40 lei - 18%
Preț: 1177.62 lei - 18%
Preț: 1771.33 lei -
Preț: 385.06 lei - 18%
Preț: 916.80 lei - 18%
Preț: 923.31 lei -
Preț: 383.23 lei -
Preț: 376.01 lei -
Preț: 398.02 lei -
Preț: 400.80 lei - 18%
Preț: 910.89 lei -
Preț: 389.13 lei - 18%
Preț: 919.38 lei -
Preț: 388.40 lei - 18%
Preț: 1181.56 lei - 18%
Preț: 1177.32 lei -
Preț: 388.93 lei - 15%
Preț: 629.48 lei - 18%
Preț: 1199.62 lei - 18%
Preț: 918.17 lei - 18%
Preț: 1774.21 lei - 18%
Preț: 1185.07 lei - 18%
Preț: 1186.72 lei -
Preț: 395.98 lei - 18%
Preț: 1185.07 lei - 15%
Preț: 640.68 lei - 18%
Preț: 1184.15 lei
Preț: 382.49 lei
Puncte Express: 574
Preț estimativ în valută:
67.64€ • 79.38$ • 58.67£
67.64€ • 79.38$ • 58.67£
Carte tipărită la comandă
Livrare economică 10-24 martie
Specificații
ISBN-13: 9789401028721
ISBN-10: 9401028729
Pagini: 460
Ilustrații: XI, 441 p.
Dimensiuni: 160 x 240 x 24 mm
Greutate: 0.64 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Astrophysics and Space Science Library
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401028729
Pagini: 460
Ilustrații: XI, 441 p.
Dimensiuni: 160 x 240 x 24 mm
Greutate: 0.64 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Astrophysics and Space Science Library
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
I / Collisional Systems.- A. Analytic Treatments.- Collisional Processes in Stellar Systems.- Polarization Clouds and Dynamical Friction.- A Certain Discontinuous Markov Process in Stellar Dynamics.- Relaxation Times in Strictly Disk Systems.- B. Numerical Experiments.- Numerical Experiments on the N-Body Problem.- Monte Carlo Models of Star Clusters.- A Fluid-Dynamical Method for Computing the Evolution of Star Clusters.- On the Lifetimes of Galactic Clusters.- Disruption of Star Clusters through Passing Interstellar Clouds Investigated by Numerical Experiments.- Numerical Experiments on the Escape from Non-Isolated Clusters and the Formation of Multiple Stars.- Binary Evolution in Stellar Systems.- On the Dissolution Time of a Class of Binary Systems.- On the Reproducibility of Run-Away Stars Formed in Collapsing Clusters.- Numerical Experiments on Pair Correlations and on ‘Thermodynamics’.- A Numerical Experiment on Relaxation Times in Stellar Dynamics.- Recent Developments of Integrating the Gravitational Problem of N-Bodies.- A Multi-Particle Regularisation Technique.- The Use of Integrals in Numerical Integrations of the N-Body Problem.- II / Collisionless Systems.- A. Analytic Treatments.- Collisionless Stellar Dynamics.- On the Origin and Permanence of Galactic Spirals.- The Hose-Pipe Instability in Stellar Systems.- On the Stability of an Encounterless Self-Gravitating Constant Density System.- Exact Statistical Mechanics of a One-Dimensional Self-Gravitating System.- B. Numerical Experiments.- Numerical Experiments in Collisionless Systems.- Dynamics of Plane Stellar Systems.- Numerical Experiments in Spiral Structure.- On the Number of Isolating Integrals in Systems with Three Degrees of Freedom.- Numerical Experiments on Lynden-Bell’s Statistics.- APhase-Space Boundary Integration of the Vlasov Equation for Collisionless One-Dimensional Stellar Systems.- The Collective Relaxation of Two-Phase-Space-Density Collisionless One-Dimensional Selfgravitating Systems.- Numerical Experiments with a One-Dimensonal Gravitational System by an Euler-Type Method (Summary).- N-Body Problem and Gas Dynamics in One Dimension (Abstract).- III / Numerical Experiments and Analytical Treatments in Plasma Physics.- Computer Simulation of Plasmas.- Enhancement of Relaxation Processes by Collective Effects.- Stability Properties for Encounterless Self-Gravitational Stellar Gas and Plasma.- IV / Summary of the Colloquium.- V / Appendix: Methods of Computer Simulation of the Gravitational N-Body Problem.- Direct Integration Methods of the N-Body Problem.- Treatment of Close Approaches in the Numerical Integration of the Gravitational Problem of N Bodies.- The Monte Carlo Method.- The Fluid-Dynamical Method.- The Model of Spherical Concentric Shells.- Integration Methods where Force is Obtained from the Smoothed Gravitational Field.