Grammatical Inference: Algorithms and Applications
Editat de Pieter Adriaans, Henning Fernau, Menno van Zaanenen Limba Engleză Paperback – 11 sep 2002
Preț: 322.61 lei
Preț vechi: 403.26 lei
-20% Nou
Puncte Express: 484
Preț estimativ în valută:
57.08€ • 66.50$ • 49.84£
57.08€ • 66.50$ • 49.84£
Carte tipărită la comandă
Livrare economică 17-31 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540442394
ISBN-10: 3540442391
Pagini: 328
Ilustrații: X, 318 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.5 kg
Ediția:2002
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540442391
Pagini: 328
Ilustrații: X, 318 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.5 kg
Ediția:2002
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Contributions.- Inference of Sequential Association Rules Guided by Context-Free Grammars.- PCFG Learning by Nonterminal Partition Search.- Inferring Subclasses of Regular Languages Faster Using RPNI and Forbidden Configurations.- Beyond EDSM.- Consistent Identification in the Limit of Rigid Grammars from Strings Is NP-hard.- Some Classes of Regular Languages Identifiable in the Limit from Positive Data.- Learning Probabilistic Residual Finite State Automata.- Fragmentation: Enhancing Identifiability.- On Limit Points for Some Variants of Rigid Lambek Grammars.- Generalized Stochastic Tree Automata for Multi-relational Data Mining.- On Sufficient Conditions to Identify in the Limit Classes of Grammars from Polynomial Time and Data.- Stochastic Grammatical Inference with Multinomial Tests.- Learning Languages with Help.- Incremental Learning of Context Free Grammars.- Estimating Grammar Parameters Using Bounded Memory.- Stochastic k-testable Tree Languages and Applications.- Fast Learning from Strings of 2-Letter Rigid Grammars.- Learning Locally Testable Even Linear Languages from Positive Data.- Inferring Attribute Grammars with Structured Data for Natural Language Processing.- A PAC Learnability of Simple Deterministic Languages.- On the Learnability of Hidden Markov Models.- Shallow Parsing Using Probabilistic Grammatical Inference.- Learning of Regular Bi-? Languages.- Software Descriptions.- The EMILE 4.1 Grammar Induction Toolbox.- Software for Analysing Recurrent Neural Nets That Learn to Predict Non-regular Languages.- A Framework for Inductive Learning of Typed-Unification Grammars.- A Tool for Language Learning Based on Categorial Grammars and Semantic Information.- ‘NAIL’: Artificial Intelligence Software for Learning Natural Language.- Lyrebird™:Developing Spoken Dialog Systems Using Examples.- Implementing Alignment-Based Learning.
Caracteristici
Includes supplementary material: sn.pub/extras