Geometric Algorithms and Combinatorial Optimization: Algorithms and Combinatorics, cartea 2
Autor Martin Grötschel, Laszlo Lovasz, Alexander Schrijveren Limba Engleză Paperback – 21 dec 2011
Din seria Algorithms and Combinatorics
- 18%
Preț: 1079.97 lei - 18%
Preț: 862.81 lei - 15%
Preț: 570.23 lei -
Preț: 372.67 lei -
Preț: 376.75 lei - 15%
Preț: 614.41 lei - 15%
Preț: 632.81 lei - 18%
Preț: 927.86 lei - 15%
Preț: 624.14 lei - 18%
Preț: 750.75 lei - 18%
Preț: 914.06 lei - 18%
Preț: 916.33 lei -
Preț: 492.60 lei - 15%
Preț: 614.24 lei - 24%
Preț: 987.99 lei - 18%
Preț: 941.66 lei - 18%
Preț: 929.67 lei - 20%
Preț: 541.30 lei -
Preț: 384.33 lei - 15%
Preț: 619.29 lei - 18%
Preț: 757.41 lei -
Preț: 371.37 lei - 15%
Preț: 566.44 lei - 15%
Preț: 617.72 lei - 15%
Preț: 631.08 lei -
Preț: 366.95 lei
Preț: 862.81 lei
Preț vechi: 1052.21 lei
-18% Nou
Puncte Express: 1294
Preț estimativ în valută:
152.65€ • 179.47$ • 133.70£
152.65€ • 179.47$ • 133.70£
Carte tipărită la comandă
Livrare economică 28 ianuarie-11 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642782428
ISBN-10: 3642782426
Pagini: 380
Ilustrații: XII, 362 p.
Dimensiuni: 170 x 242 x 20 mm
Greutate: 0.64 kg
Ediția:2nd ed. 1993. Softcover reprint of the original 2nd ed. 1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Algorithms and Combinatorics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642782426
Pagini: 380
Ilustrații: XII, 362 p.
Dimensiuni: 170 x 242 x 20 mm
Greutate: 0.64 kg
Ediția:2nd ed. 1993. Softcover reprint of the original 2nd ed. 1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Algorithms and Combinatorics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
0. Mathematical Preliminaries.- 0.1 Linear Algebra and Linear Programming.- 0.2 Graph Theory.- 1. Complexity, Oracles, and Numerical Computation.- 1.1 Complexity Theory: P and NP.- 1.2 Oracles.- 1.3 Approximation and Computation of Numbers.- 1.4 Pivoting and Related Procedures.- 2. Algorithmic Aspects of Convex Sets: Formulation of the Problems.- 2.1 Basic Algorithmic Problems for Convex Sets.- 2.2 Nondeterministic Decision Problems for Convex Sets.- 3. The Ellipsoid Method.- 3.1 Geometric Background and an Informal Description.- 3.2 The Central-Cut Ellipsoid Method.- 3.3 The Shallow-Cut Ellipsoid Method.- 4. Algorithms for Convex Bodies.- 4.1 Summary of Results.- 4.2 Optimization from Separation.- 4.3 Optimization from Membership.- 4.4 Equivalence of the Basic Problems.- 4.5 Some Negative Results.- 4.6 Further Algorithmic Problems for Convex Bodies.- 4.7 Operations on Convex Bodies.- 5. Diophantine Approximation and Basis Reduction.- 5.1 Continued Fractions.- 5.2 Simultaneous Diophantine Approximation: Formulation of the Problems.- 5.3 Basis Reduction in Lattices.- 5.4 More on Lattice Algorithms.- 6. Rational Polyhedra.- 6.1 Optimization over Polyhedra: A Preview.- 6.2 Complexity of Rational Polyhedra.- 6.3 Weak and Strong Problems.- 6.4 Equivalence of Strong Optimization and Separation.- 6.5 Further Problems for Polyhedra.- 6.6 Strongly Polynomial Algorithms.- 6.7 Integer Programming in Bounded Dimension.- 7. Combinatorial Optimization: Some Basic Examples.- 7.1 Flows and Cuts.- 7.2 Arborescences.- 7.3 Matching.- 7.4 Edge Coloring.- 7.5 Matroids.- 7.6 Subset Sums.- 7.7 Concluding Remarks.- 8. Combinatorial Optimization: A Tour d’Horizon.- 8.1 Blocking Hypergraphs and Polyhedra.- 8.2 Problems on Bipartite Graphs.- 8.3 Flows, Paths, Chains, and Cuts.- 8.4 Trees,Branchings, and Rooted and Directed Cuts.- 8.5 Matchings, Odd Cuts, and Generalizations.- 8.6 Multicommodity Flows.- 9. Stable Sets in Graphs.- 9.1 Odd Circuit Constraints and t-Perfect Graphs.- 9.2 Clique Constraints and Perfect Graphs.- 9.3 Orthonormal Representations.- 9.4 Coloring Perfect Graphs.- 9.5 More Algorithmic Results on Stable Sets.- 10. Submodular Functions.- 10.1 Submodular Functions and Polymatroids.- 10.2 Algorithms for Polymatroids and Submodular Functions.- 10.3 Submodular Functions on Lattice, Intersecting, and Crossing Families.- 10.4 Odd Submodular Function Minimization and Extensions.- References.- Notation Index.- Author Index.