Gaussian Random Processes: Stochastic Modelling and Applied Probability, cartea 9
Autor I.A. Ibragimov Traducere de A.B. Aries Autor Y.A. Rozanoven Limba Engleză Hardback – 22 dec 1978
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 373.24 lei 6-8 săpt. | |
| Springer – 21 noi 2011 | 373.24 lei 6-8 săpt. | |
| Hardback (1) | 704.18 lei 6-8 săpt. | |
| Springer – 22 dec 1978 | 704.18 lei 6-8 săpt. |
Din seria Stochastic Modelling and Applied Probability
- 17%
Preț: 502.79 lei - 18%
Preț: 774.25 lei - 18%
Preț: 866.14 lei - 15%
Preț: 627.45 lei - 18%
Preț: 759.68 lei - 18%
Preț: 1078.74 lei - 15%
Preț: 457.69 lei - 18%
Preț: 910.58 lei - 18%
Preț: 915.43 lei - 15%
Preț: 617.57 lei - 15%
Preț: 618.50 lei - 15%
Preț: 612.55 lei - 18%
Preț: 762.90 lei - 15%
Preț: 608.59 lei - 18%
Preț: 704.96 lei - 18%
Preț: 754.70 lei - 15%
Preț: 570.54 lei - 15%
Preț: 618.34 lei - 15%
Preț: 627.93 lei - 15%
Preț: 616.95 lei - 18%
Preț: 917.56 lei - 15%
Preț: 620.23 lei - 18%
Preț: 910.71 lei - 18%
Preț: 773.79 lei - 15%
Preț: 619.75 lei - 20%
Preț: 508.18 lei - 20%
Preț: 629.19 lei - 18%
Preț: 1178.69 lei - 18%
Preț: 716.49 lei - 24%
Preț: 753.29 lei -
Preț: 475.79 lei - 24%
Preț: 653.19 lei -
Preț: 373.40 lei - 20%
Preț: 547.39 lei - 15%
Preț: 622.42 lei
Preț: 704.18 lei
Preț vechi: 858.76 lei
-18% Nou
Puncte Express: 1056
Preț estimativ în valută:
124.64€ • 145.86$ • 109.04£
124.64€ • 145.86$ • 109.04£
Carte tipărită la comandă
Livrare economică 24 ianuarie-07 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387903026
ISBN-10: 038790302X
Pagini: 277
Ilustrații: X, 277 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.59 kg
Ediția:1978
Editura: Springer
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:New York, NY, United States
ISBN-10: 038790302X
Pagini: 277
Ilustrații: X, 277 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.59 kg
Ediția:1978
Editura: Springer
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I Preliminaries.- I.1 Gaussian Probability Distribution in a Euclidean Space.- I.2 Gaussian Random Functions with Prescribed Probability Measure.- I.3 Lemmas on the Convergence of Gaussian Variables.- I.4 Gaussian Variables in a Hilbert Space.- I.5 Conditional Probability Distributions and Conditional Expectations.- I.6 Gaussian Stationary Processes and the Spectral Representation.- II The Structures of the Spaces H(T) and LT(F).- II. 1 Preliminaries.- II.2 The Spaces L+(F) and L-(F).- II.3 The Construction of Spaces LT(F) When T Is a Finite Interval.- II.4 The Projection of L+(F) on L-(F).- II.5 The Structure of the ?-algebra of Events U(T).- III Equivalent Gaussian Distributions and their Densities.- III.1 Preliminaries.- III.2 Some Conditions for Gaussian Measures to be Equivalent.- III.3 General Conditions for Equivalence and Formulas for Density of Equivalent Distributions.- III.4 Further Investigation of Equivalence Conditions.- IV Conditions for Regularity of Stationary Random Processes.- IV.1 Preliminaries.- IV.2 Regularity Conditions and Operators Bt.- IV.3 Conditions for Information Regularity.- IV.4 Conditions for Absolute Regularity and Processes with Discrete Time.- IV.5 Conditions for Absolute Regularity and Processes with Continuous Time.- V Complete Regularity and Processes with Discrete Time.- V.l Definitions and Preliminary Constructions with Examples.- V.2 The First Method of Study: Helson—Sarason’s Theorem.- V.3 The Second Method of Study: Local Conditions.- V.4 Local Conditions (continued).- V.5 Corollaries to the Basic Theorems with Examples.- V.6 Intensive Mixing.- VI Complete Regularity and Processes with Continuous Time.- VI.1 Introduction.- VI.2 The Investigation of a Particular Function ?(T;µ).- VI.3 The Proof of the Basic Theorem onNecessity.- VI.4 The Behavior of the Spectral Density on the Entire Line.- VI.5 Sufficiency.- VI.6 A Special Class of Stationary Processes.- VII Filtering and Estimation of the Mean.- VII.1 Unbiased Estimates.- VII.2 Estimation of the Mean Value and the Method of Least Squares.- VII.3 Consistent Pseudo-Best Estimates.- VII.4 Estimation of Regression Coefficients.- References.