Fundamentals of Uncertainty Quantification for Engineers: Methods and Models
Autor Yan Wang, Anh.V. Tran, David L. Mcdowellen Limba Engleză Paperback – 25 iun 2025
- Introduces all major topics of uncertainty quantification with engineering examples and implementation details
- Features examples from a wide variety of science and engineering disciplines (e.g., fluids, structural dynamics, materials, manufacturing, multiscale simulation)
- Discusses sampling methods, surrogate modeling, stochastic expansion, sensitivity analysis, dimensionality reduction and more
Preț: 1016.99 lei
Preț vechi: 1400.49 lei
-27%
Puncte Express: 1525
Preț estimativ în valută:
179.80€ • 214.81$ • 155.75£
179.80€ • 214.81$ • 155.75£
Carte tipărită la comandă
Livrare economică 07-21 martie
Specificații
ISBN-13: 9780443136610
ISBN-10: 0443136610
Pagini: 434
Dimensiuni: 152 x 229 mm
Greutate: 0.71 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0443136610
Pagini: 434
Dimensiuni: 152 x 229 mm
Greutate: 0.71 kg
Editura: ELSEVIER SCIENCE
Cuprins
PART 1 Fundamentals of uncertainty quantification
1. Uncertainty quantification for engineering decision making
2. Probability and statistics in uncertainty quantification
3. Sampling methods in uncertainty quantification 85
4. Surrogate modeling in uncertainty quantification
5. Stochastic expansion methods in uncertainty quantification
6. Bayesian inference in uncertainty quantification
7. Sensitivity analysis in uncertainty quantification
8. Linear and nonlinear dimensionality reduction techniques in uncertainty quantification
9. Applications of uncertainty quantification in engineering
PART 2 Advanced topics of uncertainty quantification
10. Stochastic processes in uncertainty quantification
11. Markov models in uncertainty quantification
12. Nonprobabilistic methods in uncertainty quantification
1. Uncertainty quantification for engineering decision making
2. Probability and statistics in uncertainty quantification
3. Sampling methods in uncertainty quantification 85
4. Surrogate modeling in uncertainty quantification
5. Stochastic expansion methods in uncertainty quantification
6. Bayesian inference in uncertainty quantification
7. Sensitivity analysis in uncertainty quantification
8. Linear and nonlinear dimensionality reduction techniques in uncertainty quantification
9. Applications of uncertainty quantification in engineering
PART 2 Advanced topics of uncertainty quantification
10. Stochastic processes in uncertainty quantification
11. Markov models in uncertainty quantification
12. Nonprobabilistic methods in uncertainty quantification