Cantitate/Preț
Produs

From Local to Global Optimization: Nonconvex Optimization and Its Applications, cartea 53

Editat de A. Migdalas, Panos M. Pardalos, Peter Värbrand
en Limba Engleză Paperback – 9 dec 2010

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 95165 lei  43-57 zile
  Springer Us – 9 dec 2010 95165 lei  43-57 zile
Hardback (1) 95801 lei  43-57 zile
  Springer Us – 30 iun 2001 95801 lei  43-57 zile

Din seria Nonconvex Optimization and Its Applications

Preț: 95165 lei

Preț vechi: 118955 lei
-20% Nou

Puncte Express: 1427

Preț estimativ în valută:
16837 19616$ 14703£

Carte tipărită la comandă

Livrare economică 19 ianuarie-02 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781441948526
ISBN-10: 144194852X
Pagini: 360
Ilustrații: XVIII, 340 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.5 kg
Ediția:Softcover reprint of hardcover 1st ed. 2001
Editura: Springer Us
Colecția Springer
Seria Nonconvex Optimization and Its Applications

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1 Convex Global Underestimation for Molecular Structure Prediction.- 2 Bayesian Heuristic Approach (BHA) and Applications to Discrete Optimization.- 3 A Finite Branch-and-Bound Method for Bilinear Hydro Power Scheduling.- 4 Two Examples of Global Optimization by Means of Local Techniques.- 5 Modelling techniques for nonlinear pooling problems.- 6 Optimization and Hierarchies for Lumped Distributed Networks.- 7 n Tuy’s 1964 Cone Splitting Algorithm for Concave Minimization.- 8 The ?BB Global Optimization Algorithm for Nonconvex Problems: An Overview.- 9 Infimum of Polynomials and Singularity at Infinity.- 10 Solving Global Optimization Problems with BARON.- 11 D.C. Programming Approach to the Multidimensional Scaling Problem.- 12 On Minimization of Sums of Heterogeneous Quadratic Functions on Stiefel Manifolds.- 13 A Nonlinear Lagrangian Function for Discrete Optimization Problems.- 14 Local and Global Behavior of Moving Polytope Algorithms.- 15 Relational Complementarity Problem.